Firewall Assignment

Assignment 8

Network Security (CS6903)

Devang Dubey (cs2Imtech14013)
Kamal Shrestha (cs2 Imtech16001)
Nilesh Shivanand Kale (cs2Imtechl1022)

Pradhumn Kanase (cs2Imtechl10138)

May 2, 2022

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

mailto:cs21mtech16001@iith.ac.in
mailto:cs21mtech11022@iith.ac.in

Table of contents

Table of contents 2
Abstract 3
Setup 4
Configuration 5
Laptop 1 5
Laptop 2 6
Testing 7
Task 1 9
Task 2 12
How our Firewall Works 12
Types of Rules 15
L2: Mac Layer Filtering Rule 15

IP Packet Filtering Rule 15

UDP Packet filtering Rule 15

TCP Packet filtering Rule 16

Task 3 17
Task 4 - Part B: 20
DoS Attack 20
Prevention using Firewall 20

et stedfrdh et e
Indian Institue of Technology Hyderabs

Abstract

We have created a firewall system. A firewall monitors the incoming and outgoing traffic in the
network A firewall is a network security device that monitors incoming and outgoing network
traffic and permits or blocks data packets based on a set of security rules.

First, we try to implement a simple firewall system with two network interface cards connecting
to the external network (Internet) and the internal network which is supposed to be secured. In
this system we hardcore a simple rules set. Then we improve the firewall to make it more
advanced by extending the supported rule set up to layer 4 (including MAC, IPv4 IPv6, ICMP
for IPv4/v6, TCP/UDP) and not hard-coding the ruleset. Then we analyzed the performance of
the implemented firewall, calculating the packet per second the implementation can handle for
different scenarios. We have then tried to improve the performance of the firewall. In the final
step, we have shown how to detect attacks such as DoS.

Setup

et stedfrdh et e
Indian I

stitute of Technology Hyderabad

Three VM has been set up in which VM1 is the internal network, VM2 is the firewall and VM3
is the external network that is connected to the internet. We have done the setup on 2 laptops.

VM1 (Internal)
Internal Host
IP: 192.168.130.135

Bridge 1

VM1
Internal Host

IP: 192.168.100.6

Bridge 1

VMS3 (external)
External Host
IP: 192.168.140.188

//'/# \\>
(
Firewall \.7 Internet Q
<)
NW interface: enp1s0 NW interface: enp6s0 (_/Bridge 2 TN //4 .
IP: 192.168.130.158 IP: 192.168.140.181 ——
Fig: Setup on laptop 1
VM3
External Host
IP:192.168.101.6 //R .
¢)
N Internet {
g .

Firewall VM2

NW interface: enp0s3
IP: 192.168.100.7

NW interface: enp0s8
IP: 192.168.101.7

Fig: Setup on laptop 2

Bridge 2

et stedfrdh et e
Indian Institue of Technology Hyderabad

Configuration

The following are the Ip addresses and the route table configurations of the VM’s

2-Standard-PC-{
flags=416
Lnet 192.16
inets teBf::t H L pretixlen
: ueyelen 1

enpls@:

@ frame @
346 1 (3.4 HB)
errors 8 dropped 8 erruns & carrier 8 collisions @

enpisd: 416 IP : mtu 158@

18615

OVErTuUns

Fig: VM3 config

35-ICH9-200%9: /home /vm2E route -n

rmel IP routing
ination C ; Genmask Flags Metric s Iface
- UG & i B enpls@
UG 20168 ¢ anp
1880 E B enplsE
enplsd

fhome fvmls route -n

Genmask Flags Metric
8.8 G
UG
=] u
2.0 u
5.8 u ; B _enp
vml% echo 8 = wet fipwd fip fnrwardl

y ; ¢ C Iface
168.148.1 B.6.6.8 B : i enpl
'EI |':\ 55 [H ._I : A _annich
UG @ B enpl
iptables -t nat -A ROUTING -o enpls® -j MASQUERADE

Fig: VM3 route table

Laptop 2

$ ifconfig
flags=4163<UP ,BROADCAST ,RUNNING ,MULTICAST> mtu 1500
inet 192.168.100.6 netmask 255.255.255.0 broadcast 192.168.100.255
inet6 fe80::5366:8c4a:246:14f prefixlen 64 scopeid 0x20<link>
ether 08:00:27:ab:ba:9d txqueuelen 1800 (Ethernet)

RX packets 26660 bytes 38182592 (38.1 MB)

RX errors @ dropped © overruns © frame ©

TX packets 9251 bytes 784667 (784.6 KB)

TX errors @ dropped ® overruns @ carrier @ collisions @

Fig: VM1 config

flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500

inet 192.168.100.7 netm 255.255.255.0 broadcast 192.168.100.255
inet6 feBO0::166e:594d:2ec2:a8c® prefixlen 64 scopeid 8x20<link=>
ether 08:00:27:7f:36:15 txqueuelen 1000 (Ethernet)

RX packets 9383 bytes 841165 (841.1 KB)

R¥X errors ©® dropped ® overruns @ frame @

X packEtS 27083 bytes 61086567 (61.8 MB)
TX errors ©® dropped ® overruns @ carrier ® collisions @

flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500

inet 192.168.101.7 netmask 255.255.255.0 broadcast 192.168.101.255
ineté feBO::9e23:8beb6:bcda:5%ac prefixlen 64 scopeid 0x20<

ether 0B:00:27:30:76:f2 txqueuelen 1000 (Ethernet)

RX packets 124781 bytes 179598422 (179.5 MB)

RX errors ©® dropped ® overruns & frame @

TX packets 29928 bytes 3266059 (3.2 MB)

TX errors © dropped ® overruns @ carrier @ collisions ©

Fig: VM2 config (Firewall)

enp@s3: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500
inet 192.168.101.6 netmask 255.255.255.0 broadcast 192.168.101.255
inet6 feB80::92a4:fcad:a734:4c43 prefixlen 64 scopeld 0x20<1link=
ether 08:00:27:72:b6:ab txqueuelen 1800 (Ethernet)
RX packets 155826 bytes 183891554 (183.8 MB)
RX errors © dropped @ overruns @ frame @
TX packets 154738 bytes 282492175 (282.4 MB)
TX errors @ dropped @ overruns @& carrier @ collisions @

Fig: VM 3 config (external)

Testing
To check if the VM’s are working properly we are going to ping Google from VM1

Server: 127.0.0.53
Address: 127.0.0.53#53

Non-authoritative answer:

Name : google.com
Address: 142.250.195.206

Fig: Google ip add lookup

:~$ ping 142.250.195.206
PING 142.250.195.206 (142.250.195.206) 56(84) bytes of data.
from 142.250.195.206: icmp_seq=1 ttl=53 time=24.5
from 142.250.195.206: icmp_seq ttl=53 time=24.4
from 142.250.195.206: icmp_seq ttl=53 time=24.4

2
3

from 142.250.195.206: icmp seg=4 ttl=53 time=24.0
5

from 142.250.195.206: icmp_seq ttl=53 time=24.0

--- 142.250.195.206 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4086ms
rtt min/avg/max/mdev = 24.030/24.280/24.486/0.205 ms

Fig: ping to google using VM1 reply incoming

ile Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

L e S = m ([=
Ha® X[C QemESH I S5 QAQQE
[icmp|
I Time Source Destination Protocol Length Info
1 0.000000000 192.168.100.6 142.250.195. 206 ICHP 180 Echo (pimg) request
2 D.024473609 142.250.195.206 192.168.160.6 ICHP 1680 Echo (ping) reply
3 1.002315061 192.168.100.6 142.250.195.2086 ICHP 180 Eche (ping) request
4 1.026709926 142.250.195.206 192.168.100.6 ICHP 1ee Eche (ping) reply
5 2.003630023 192.168.100.6 142.250.195.286 ICHP 1680 Echo (ping) request
6 2.028024109 142.250.195.206 192.168.160.6 ICHP 1e@ Eche (ping) reply
¥ 3.005046845 192.168.100.6 142.250.195.2086 ICHP 160 Echo (ping) request
8 3.828076972 142.250.195.206 192.168.160.6 ICHP 1680 Echo (ping) reply
9 4.005843110 192.168.100.6 142.250.195.2086 ICHP 180 Eche (ping) request
10 4.0829302960 142.250.195.206 192.168.100.6 ICMP 188 Echo (ping) reply

Fig: Wireshark capture for above at VM1

File Edit View Go Capture Analyze 5Statistics Telephony Wireless Tools Help
. l:', @ X ti" Q] [y I—E 1} w -

[H [icmp

QQa’lf

No. Time Source Destination Protocol Length Info

. 436649136 . 106.6 . 180 pang

i 110 91.436682943 192.168.101.6 142.250.195.206 ICMP 100 Echo (ping) request id=@
! 111 91.460404751 142,250,185, 206 192.168.101.6 ICMP 100 Eche (ping) reply id=@
112 91.460427795 142.250,195,206 192,168,100, 6 ICHP 100 Eche (ping) reply id=@
113 92,439220549 192.168,100.6 142 ,250.195.206 ICMP 100 Echo (ping) request 1id=@
| 114 92.439275706 192.168.101.6 142.250.195.206 ICMP 180 Echo (ping) request id=@
! 115 92.462273797 142.250.195,206 192.168.101.6 ICMP 100 Eche (ping) reply id=@
116 92,462305956 142,250,195,206 192.168.100.6 ICHMP 180 Eche (ping) reply id=@
117 93,440569186 192,168,100,6 142,250,195, 206 ICMP 180 Echo (ping) request id=@
! 118 93,440619639 192,168.101.6 142,250,195, 206 ICHMP 100 Echo (ping) request id=e
! 110 93,463565456 142,250,185, 206 197,168.101,6 ICMP 180 Echo (ping) reply id=@
120 93463596568 142.250,195,206 192,168,100, 6 ICHMP 180 Echo (ping) reply id=@
121 94,441851607 192,168,100,6 142,250,195, 206 ICHMP 180 Echo (ping) request 1d=@
! 122 94,441891454 192,168,101.6 142,250,195, 206 ICHMP 180 Echo (ping) request id=e
| 123 94,464636223 142,250,195, 206 192.168.101,6 ICHMP 180 Echo (ping) reply id=@
124 94464667083 142.250,195,206 192,168.100,6 ICHMP 180 Echo (ping) reply id=@
129 95442855759 192.168,100.6 142,250,195, 206 ICHMP 180 Echo (ping) request 1d=@
| 130 95,442894111 192.168,101.6 142,250,195, 206 ICHMP 180 Echo (ping) request 1id=e
| 133 95,.4652974B7 142,250,195, 206 192.168.101.6 ICHMP 180 Echo (ping) reply id=@
L 134 95.465329005 142.250,195,206 192.168.100.6 ICHMP 180 Echo (ping) reply id=@

Fig: Wireshark capture for above at firewall

Task 1

Creating a simple Firewall using Socket Programming

In this part, we have implemented a simple firewall. This firewall works at layer 3 i.e IP layer.
In this, there is a precoded list of IP addresses that can be blocked. By default, it allows all the
packets. It checks if the IP address is in the blocked list, if it is there it makes allow = False.

self.rules = {"BLOCKED IP LIST": ["142.250.182.46"]}

def get ip(self, addr): -
def parse_ethernet(self, raw_data):-
def parse IP(self, raw data): -

def parse rules(self, raw data):
eth = self.parse ethernet(raw_data)
ip = self.parse IP(raw data[14:])

if eth[1l] == self.external host mac:

ip[4] == Source IPV4 Address

if ip[4] in self.rules["BLOCKED IP LIST"]:
allow = False

Fig: Hardcoded IP addresses
Command for the simple firewall.

Command:

python3 firewall.py -s

As we can see 142.250.195.206 is the blocked ip address. We have run a ping command from the
internal host to 142.250.195.206 i.e to the Google server. The request of the ping request is
passed by the firewall but the reply from the Google server is not allowed by the firewall. This
happens because the Google IP address is on the blocking list.

$ ping 142.250.195.206
PING 142.250.195.206 (142.250.195.206) 56(84) bytes of data.
M [

--- 142.250.195.206 ping statistics ---
9 packets transmitted, © received, 100% packet loss, time 8194ms

Fig: Tried ping command again from internal host VM1

et stedfrdh et e
Indian Institue of Technology Hyderabad

Indian Institue of Technology Hyderabad

[Src MAC]: 52:54:00:f7:69:35, [Dstn MAC]: 52:54:00:7f:
[Src IP]: 192.168.130.135, [Dstn IP]: 142.250.182.14
[Status]: Allowed

[PPT] : 0.80015859

[Src MAC]: 52:54:00:d6:10:87, [Dstn MAC]: 52:54:
[SrcIP]: 142.250.182.14, [Dstn IP]: 192.168.130.
[Status]: :

[PPT] : 0.00015407

[Src MAC]: 52:54:00:d6:10:87, [Dstn MAC]: 52:54:
[SrcIP]: 142.250.182.14, [Dstn IP]: 192.168.130.

[Status]: Oppe
[PPT] : 0.00014085

[Src MAC]: 52:54:00:41:10:ec, [Dstn MAC]: 52:54:
[SrcIP]: 142.250.182.14, [Dstn IP]: 192.168.130.
[Status]: ec
[PPT] : 6.409e-0

[Src MAC]: 52:54:00:f7:69:35, [Dstn MAC]: 52:54:00:7f:
[Src IP]: 192.168.130.135, [Dstn IP]: 142.250.182.14
[Status]: Allowed

[PPT] : 5.913e-85

Fig: Packets allowed and discarded by the blocking process (ScreenShot from Laptop 1)

PCAP analysis:
The PCAP on VMI shows that there is no reply packet from the Google server
(142.250.195.206) since the IP has been blocked by the firewall in the source IP field.

10

Indian Institue of Technology Hyderabad

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AR de mRE QesEF IE EFaaaE

(W [icmp
No. Time Source Destination Protocol Length Info
3 1.153036011 g 8 .6 250, 19" (ping) request
7 2.179446362 192.168.100.6 147.250.195. 206 ICMP 186 Echo (ping) request
8 3.203193653 192.168.100.6 147 .250.195. 206 ICMP 186 Echo (ping) request
9 4,227366463 192.168.100.6 142.250.195. 206 ICMP 168 Echo (ping) request
16 5.251369746 192.168.100.6 142.250.195.206 ICMP 18@ Echo (ping) request
15 6.274814256 192.168.100.6 142.250.195.206 ICMP 18@ Echo (ping) request
16 7.299004668 192.168.100.6 147 .250.195. 206 ICMP 186 Echo (ping) request
17 8.322706588 192.168.100.6 147 .250.195. 206 ICMP 186 Echo (ping) request
18 9.347092737 192.168.100.6 147 .250.195. 206 ICMP 186 Echo (ping) request
Fig: Wireshrk capture at VM1 shows that reply is blocked by firewall
N [icmp
lo. Time Saurce Destination Protocol Length Info

9.444889897 (ping) request

. 445041671 .168.100 .6 .250.195. 206 80 Echo (ping) reguest
30 19.4G8988830 142.250.195.206 192.168.180.6 ICMP 180 Echo (ping) reply
39 20.471415490 192.168.100.6 142.250.195.206 ICMP 180 Echo (ping) request
48 20.471630814 192.168.100.6 142.250.195.206 ICMP 180 Echo (ping) request
41 20.492873684 142.250.195.206 192.168.100.6 ICMP 188 Echo (ping) reply
42 21.495020957 192.168.100.6 142.250.195.206 ICMP 160 Echo (ping) request
43 21.495216136 192.168.100.6 142.250.195.206 ICMP 188 Echo (ping) request
44 21.518102391 142.250.195.206 192.168.1060.6 ICMP 166 Echo (ping) reply
45 22.519147480 192.168.100.6 142.250.195.206 ICMP 1@ Echo (ping) request
46 22.519355503 192.168.100.6 142.250.195.206 ICMP 180 Eche (ping) request
47 22.542838465 142.250.195.206 192.168.100.6 ICMP 1@ Echo (ping) reply
48 23.543259208 192.168.100.6 142.250.195. 206 ICMP 168 Echo (ping) request
49 23.543460414 192.168.100.6 142.250.195.206 ICMP 180 Echo (ping) request
50 23.582578963 142.250.195.206 192.168.100.6 ICMP 18 Echo (ping) reply
66 24.566550081 192.168.100.6 142.250.195.206 ICMP 180 Eche (ping) request
61 24.566704389 192.168.100.6 142.250.195.206 ICMP 1@ Echo (ping) request
62 24.580439880 142.250.195.206 192.168.100.6 ICMP 168 Echo (ping) reply

Fig: Reply received at firewall but is not forwarded, it is blocked.

11

Task 2

Extending the ruleset and its operation on the Firewall

In this task, we need to add additional rules to improve the functionality of the firewall. We are
filtering at layer 2 [Ether], layer 3 [IP], and layer 4 [TCP, UDP]. We are doing dynamic rule
management by addition, deletion, and updating the rules in the firewall. This is done by storing
the rules of the firewall in a json file. The json file is edited in order to update the rules.

Command:

python3 firewall.py

How our Firewall Works

python3 firewall.py

>{ Firewall Home Screen }{

/PI‘eSS S Press "r"
Press c to continue Blocking Process Opens rules.json

Press "ctrl + c"

1 \,

Make changes in rules.json

o Save file
Statistics Exit file

Fig: Firewall CFG

12

Firewall Home Screen : Home Screen

=1 root@vm1-Standard-PC-Q35-ICH9-2009: /home/vm1

Start Firewall with 's', Manage Rules with 'r', Exit with 'e'

2

Fig: Home screen

Blocking Process :

Blocking process looks at every single packet and decides whether it can be allowed or it needs
to be blocked based on the rules mentioned in the rules.json. In our Firewall, by default, it
blocks all the packets. If we want to allow any type of packet we need to mention it in
rules.json

[Src MAC]: 52:54:00:f7:69:35, [Dstn MAC]: 52:54:00:7f:ab:9d
[Src IP]: 192.168.130.135, [Dstn IP]: 142.250.182.14
[Status]: Allowed

[PPT] : ©.00015059

[Src MAC]: 52:54:00:d6:10:87, [Dstn MAC]: 52:54:00:41:10:ec
[SrcIP]: 142.250.182.14, [Dstn IP]: 192.168.130.135
[Status]: 2

[PPT] : ©.00015407

[Src MAC]: 52:54:00:d6:10:87, [Dstn MAC]: 52:54:00:41:10:ec
[SrcIP]: 142.250.182.14, [Dstn IP]: 192.168.130.135
[Status]: oppe

[PPT] : ©.00014085

[Src MAC]: 52:54:00:41:10:ec, [Dstn MAC]: 52:54:00:d6:10:87
[SrcIP]: 142.250.182.14, [Dstn IP]: 192.168.130.135

Fig: blocking process running

Statistics :

When the Firewall run is complete the firewall program returns the Statistics page which returns
the number of allowed and dropped packets. It also returns the average time taken to process
each packet.

13

Firewall Capture Statistics
Mo of packets allowed : 78

Mo of packets dropped : 132

Mean Packet Processing Time : 0.0001248

No of rules in system : 3

Press 'c' to continue...

Fig: Statistics pageos:

rules.json:
rules.json file is the file from which we read the rules which are used in te blocking process. We
can also add, delete or update rules in this.

r : -
Open ~ | [+ rg_l_ef.]s.on Save = - u] X

N A WNM

JSON ~ Tab width: 8 v Ln1, Col1 ot INS

Fig: rules.json file

2

When “s” is pressed the blocking process is started. When “7”" is pressed then the rules.json file
is opened in which we can add, remove and update the rules. After every run of the firewall the
program prints the statistics of the code.

14

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Types of Rules

L2: Mac Layer Filtering Rule

Filtering packets based on Mac address

ez
{
"rule id": 168,
"dstn mac": "52:54:00:f7:69:35",
"rule": "Allow"
i

Fig: Allowed packet rule

IP Packet Filtering Rule
Filtering packets based on IP rule

"L3v4r: [
{
“rule 30 5T,
"ipv4protocol”: 3,
"rule": "Allow"

Fig: Allowed packet rule

UDP Packet filtering Rule
Filtering packets based on IP rule

"L4UDP": [
{
"rule id*: 585,
"udpsrc_port": 403,
"udpdest port": 9876,
"rule": "Allow"

Fig: Allowed packet rule

15

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

TCP Packet filtering Rule
Filtering packets based on IP rule

"L4TCP": [

{
“rule id®: 963,
"tcpsrc_port": 463,
"tcpdest port": 5555,
"rule"™: "Allow"

Fig: Allowed packet rule

16

Task 3

Performance examination and improvement

In this part, we have tried to analyze the system. We have used the metric processing time per
packet for analyzing the performance of the system. We have increased the number of rules and
tried to observe how this affects the performance of the system.

We are generating traffic on VM3 using “generate traffic.py” which uses the “nping”
command. This file generates mixed traffic (i.e TCP/UDP/IP/IP) continuously and sends it to

VM.

Command: python3 traffic_generatorpy g
This command will generate a total 1000 packets and send to the destination IP which is

hardcoded in the file itself .

At the same time, we also wrote code to create rules using random parameters.

Command : python3 rules _generator.py rm No_Of Rules In_Each_Category.
No Of Rules In Each Category is an integer value stating how many rules will be created for
each traffic category like TCP, UDP etc.

STATISTICS

Y R 2

The Statistics of the system are as follows

Average Time Taken to process packet :

No of packets allowed : 1206
No of packets dropped : 4494

No of rules in system : 4
Maximum Matching Fields in Rules :

press enter to continuel

7.196308649122883e-05

e e ok ke o ok o ok ok ke ok ke ok ok ok ok ok ke o e ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok e ok ok ok ok ok ok ok e ok

STATISTICS

Fhkkk Rk Rk Rk kR Rk kR kR Rk kR ko h ko ko

The Statistics of the system are as follows

Average Time Taken to process packet :

No of packets allowed : 1288
No of packets dropped : 3483

No of rules in system : 12
Maximum Matching Fields in Rules :

press enter to continuel

8.349324387124151e-05

17

et stedfrdh et e
Indian Institue of Technology Hyderabad

e e o o e ok ok ook e ko ook o ok ko ok e o ook o ke ok ok o ok o oo ook ok ko ke ok o

STATISTICS

e e e e v e e ok e v e ok e vl o o ke e oo ok e oo ok o o ok ke v oo ok e o o ok e o o
The Statistics of the system are as follows

Average Time Taken to process packet : 9.80684191347755e-05
No of packets allowed : 2210

No of packets dropped : 3800

No of rules in system : 16
Maximum Matching Fields in Rules

TII33 333333 I I s I I s EEIIIIIII IS
A A A A A A A A A A A AR A AR A XTI A AR T A A AR T A AR E*®

STATISTICS STATISTICS

Fhkhhhkddrhdbhddhdbhbbdhdrddbdddhdhbddrhdrdbdrhrdbdhbddhdd e 9 4 3 1 de Je e 96 g T e e e e e e e e v e v d v 7 J 9k b e T e e e e e e e d e T U d o T

The Statistics of the system are as follows The statistics of the system are as follows

verage Time Taken to process packet : 0.0001538 Average Time Taken to process packet : ©0.000183995¢

No of packets allowed : 2853 No of packets allowed : 3193
No of packets dropped 3600 No of packets dropped 1627

No of rules in system : 52 Mo of rules in system : 100
Maximum Matching Fields in Rules : Maximum Matching Fields in Rules :

Fig: Statistics

Statistics

No of Rules Processing time per packet

4 0.00007196

8 0.00008349

16 0.00009806

50 0.0001538

100 0.0001839

18

et stedfrdh et e
Indian I

stitute of Technology Hyderabad

Processing Time per Packet

0.00020
0.00015
0.00010

0.00005

Processing Time per Packet

0.00000

0 25 50 75 100

Number of Rules
Fig: Analysis of statistics

We can see clearly as the number of Rules is increased the the time taken for processing the
packet also increases.

19

Task 4 - Part B:

Detecting attacks in the network using Firewall

DoS Attack

A Denial-of-Service (DoS) attack is one that attempts to bring a machine or network to a halt,
rendering it unreachable to its intended users. DoS attacks work by inundating the target with
traffic or delivering it information that causes it to crash. The DoS attack deprives genuine users,
such as employees, of the service or resource they expected in both cases.

DoS

) | A RERRERE!
—

Server

Fig: DoS Attack (ref: https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/)

Prevention using Firewall

In this task we're going to detect the Dos attack that we are performing on VMI. In order to
prevent the DoS attack we have tried to put a cap on the number of packets incoming from one
IP. If a lot of IP packets are incoming from one IP then the firewall system detects that there is
some DoS attack and then blocks that particular IP. Here is our implementation of the DoS
attack:

KB}
carrier & collislens @

vmz# nplng -c 200 --delay 20ms --tcp -p 9876

Fig: Internal VM1

20

https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/

In this the Internal machine i.e. VM1 (192.168.130.135) is generating ping messages and is
continuously sending it to the external machine i.e. VM3 (192.168.140.188). This ping is
sending 200 packets and they are sent periodically at a delay of 20ms from each other.

enplse: flags

t 192.168.148, 255
64 scopeld 1ink=
{Ethernet)

7+
opped € rruns 8@ frame @
4 byte 84 (74
TK errors @ dropped @ overruns @ carrier 8 collisions @

Hiek"

Fig: IP address of external machine VM3

root@vml-Standard-PC-(Q35-TCHS-2889: fhome fvml# python3 adv_firewall.py -d 188

Fig: Command for DoS attack prevention in VM2 (Firewall)

What this command does is it enables the DoS prevention mechanism and if the number of
packets from an IP address is more than 100 then the Firewall blocks the IP address.

:~$ sudo cat rules.json
[sudo] password for vml:
{’ee%: [
"L3v4": [{"rule_id": 186, "dstn_ip": "192.168.146.188", "rule": "allow"}],

"L3ve": [], "L4TCP": [{"rule id": 186, "tcpdest port": 9876, "rule": "allow"}],
"L4UDP": [], "IcMP": []1}

Fig: Rules description
As we can see in the Fig above the rule with rule id: 100, tells to allow the packets with which
have destination address as 192.168.140.188

21

[Status]: [
[PPT] : 4.311e-05

;1m[TCP]
[Src MAC]: 52:54:00:f7:69:35, [Dstn MAC]: 52:54:00:7f:ab:5d
[Src IP]: 192.168.130.135, [Dstn IP]: 192.168.140.188
[Status]: Allowed
[PPT] : 7.084e-85

;1Im[TCP]
Src MAC]: 52:54:00:d6:10:87, [Dstn MAC]: 52:54:00:41:10:ec

Fig: Firewall ON, DoS is not detected yet

Since the number of Packets is not more than 100 DoS is not detected yet.

[Status]:)E
[PPT] : ©.00013958

DoS Detected

;Im[TCP]
[Src MAC]: 52:54:00:f7:69:35, [Dstn MAC]: 52:54:00:7f:ab:9d
[SrcIP]: 192.168.130.135, [Dstn IP]: 192.168.140.188

[Status]: ;
[PPT] : ©.00010329

DoS Detected
;Im[TCP]
[Src MAC]: 52:54:00:f7:69:35, [Dstn MAC]: 52:54:00:7f:ab:5d

Fig: Firewall ON, DoS is Detected

In the above Figure the number of packets has crossed 100 mark hence the Firewall has started to
block the packets.

In the figure below, we can see that once the number of packets reaches 100 then the IP address

of VM1 (192.168.130.135) is blocked and no more packets are incoming from it. Thus the
number of allowed packets plateaus after a point.

22

Firewall Statistics

—— Allowed Packets |
—— Dropped Packets

200

150 4

100 ~

50 A

Number of allowed/dropped packets

Running Time

Fig: Cumulative graph of allowed packets and Dropped packets

This figure clearly demonstrates how the packets gets dropped when a firewall detects DDoS.

23

