
Assignment 1: ABCs of Digital Certificates
Individual Assignment

Kamal Shrestha

CS21MTECH16001

Jan 30, 2022

PART-A 2

PART-B 16

7-zip 26

1

PART-A
● Visit the website #N in this list of top-100 most visited websites globally where is #N is the last two digits in your roll number

and download all the certificates in .CER format in the chain of trust from the Root Certificate, intermediate certificate(s), to
the end-user (website) certificate at the leaf in the hierarchy.

● Compare the digital certificates in the chain in terms of various field values by filling this table.

Field Name Subject (CN) of the certificate
holder (website)

Subject (CN) of the certificate
holder (intermediate)

Subject (CN) of the certificate
holder (root)

Remarks/observations

Issuer C=US, O=DigiCert Inc,
CN=DigiCert TLS Hybrid ECC
SHA384 2020 CA1

C=US, O=DigiCert Inc,
OU=www.digicert.com,
CN=DigiCert Global Root CA

C=US, O=DigiCert Inc,
OU=www.digicert.com, CN=DigiCert
Global Root CA

Only one Intermediate
CA is involved in the
chain of trust
(validation) and both the
CAs are based on
DigiCert Inc.

Version No. Version: 3 (0x2) Version: 3 (0x2) Version: 3 (0x2) All with updated
versions of digital
certificates.

Signature Algo ecdsa-with-SHA384 sha384WithRSAEncryption sha1WithRSAEncryption Varied Signature
Algorithm between the
CAs.

The root is still using the
SHA-1 Hashing
Algorithm to get the

2

https://ahrefs.com/blog/most-visited-websites/

message digest giving
160 bits.
The end user certificate
signing is also done
using ECDSA and not
RSA (which is the most
common for certificate
signing.)

Size of digest 384 bits 384 bits 160 bits Depends on the hashing
algorithm we use.

Signature Value 30:66:02:31:00:cd:aa:e8:16:18:0
b:5e:de:24:bc:44:76:f3::e5:1e:a5:
03:19:52:7e:fe:57:2c:0b:fe:e2:af:
b4:67:3e::82:08:36:ce:01:60:30:8
b:5b:a3:4e:50:27:1f:de:02:02::00
:8e:fb:20:28:7e:b5:cf:df:1f:90:99
:09:83:b0:77:70::e0:94:3f:9d:59:
7d:ca:6c:21:69:2e:69:d2:cc:0f:e9
:ac::c4:93:c2:9c:d6:83:96:e5:73:
39:72:7d:9c

47:59:81:7f:d4:1b:1f:b0:71:f6:98:
5d:18:ba:98:47:98:b0::76:2b:ea:ff
:1a:8b:ac:26:b3:42:8d:31:e6:4a:e
8:19:d0::da:14:e7:d7:14:92:a1:92
:f2:a7:2e:2d:af:fb:1d:f6:fb::b0:8a:
3f:fc:d8:16:0a:e9:b0:2e:b6:a5:0b:
18:90:35:26::da:f6:a8:b7:32:fc:95
:23:4b:c6:45:b9:c4:cf:e4:7c:ee::c
9:f8:90:bd:72:e3:99:c3:1d:0b:05:
7c:6a:97:6d:b2:ab::36:d8:c2:bc:2
c:01:92:3f:04:a3:8b:75:11:c7:b9:
29:bc::d0:86:ba:92:bc:26:f9:65:c
8:37:cd:26:f6:86:13:0c:04::89:e5:
78:b1:c1:4e:79:bc:76:a3:0b:51:e4
:c5:d0:9e:6a::1a:2c:56:ae:06:36:2
7:a3:73:1c:08:7d:93:32:d0:c2:44:

cb:9c:37:aa:48:13:12:0a:fa:dd:44:9c:4
f:52:b0:f4:df:ae::f5:79:79:08:a3:2418:
fc:4b:2b:84:c0:2d:b9:d5:c7:fe::c1:1f:5
8:cb:b8:6d:9c:7a:74:e7:98:29:ab:11:b
5:e3:70::a1:cd:4c:88:99:93:8c:91:70:e
2:ab:0f:1c:be:93:a9:ff::d5:e4:07:60:d3
:a3:bf:9d:5b:09:f1:d5:8e:e3:53:f4:8e:
63:fa:3f:a7:db:b4:66:df:62:66:d6:d1:6
e:41:8d:f2:2d:b5::77:4a:9f:9d:58:e2:2
b:59:c0:40:23:ed:2d:28:82:45:3e::54:
92:26:98:e0:80:48:a8:37:ef:f0:d6:79:6
0:16:de:ac::0e:cd:6e:ac:44:17:38:2f:4
9:da:e1:45:3e:2a:b9:36:53::3a:50:06:f
7:2e:e8:c4:57:49:6c:61:21:18:d5:04:a
d:78::2c:3a:80:6b:a7:eb:af:15:14:e9:d
8:89:c1:b9:38:6c:e2::6c:8a:ff:64:b9:7

Even though the size of
the diest for end user and
intermediate CA is the
same, 384 bits, the
length/size of the
signature value is
different because of the
difference in the
signature algorithm
used. End User
Certificate (Wikipedia)
is using ECDSA which
provides the same level
of security with much
shorter key length
compared to RSA, used

3

:da:8d:f4:0e:7b:1d:28:03:2b:09:8
a:76:ca:77:dc:87:7a::7b:52:26:55:
a7:72:0f:9d:d2:88:4f:fe:b1:21:c5:
1a:a1::39:f5:56:db:c2:84:c4:35:1f
:70:da:bb:46:f0:86:bf:64::c4:3e:f
7:9f:46:1b:9d:23:05:b9:7d:b3:4f:
0f:a9:45:3a:e3:74:30:98

7:25:57:30:c0:1b:24:a3:e1:dc:e9:df::7
c:b5:b4:24:08:05:30:ec:2d:bd:0b:bf:4
5:bf:50:b9:a9::eb:98:01:12:ad:c8:88:c
6:98:34:5f:8d:0a:3c:c6:e9:d5:
95:95:6d:de

by intermediate CA.

Validity period Expires Nov 17 2022 (295 days)

Thu, 17 Nov 2022 23:59:59
GMT

Expires Apr 13 2031 (3364 days)

Sun, 13 Apr 2031 23:59:59 GMT

Expires Nov 10 2031 (3574 days)

Mon, 10 Nov 2031 00:00:00 GMT

Validity for Root
Certificates are very
high

Is Subject field
(CN), FQDN?

FQDN CN CN

More alternative names
so many fully qualified
domain names, if no
alternative names then
only Single domain with
one common name.

Certificate type:
DV, IV, OV, or
EV? Tell also
how you are able
to determine the
type!

Organization Validation

Mentioned in the Certificate

Domain Validation

Mentioned in the Certificate

- Root CAs don't have any
validations, Often the
end-user web servers
have a multi-domain
certificate and have a lot
of SANs.

The type of the

4

certificate was
mentioned clearly in the
certificate also but we
could infer the validation
type based on the use
case of the certificate.

Subject
Alternative
Name
(SAN/UCC), if
any

*.wikipedia.org, wikimedia.org,
mediawiki.org, wikibooks.org,
wikidata.org, wikinews.org,
wikiquote.org, wikisource.org,
wikiversity.org, wikivoyage.org,
wiktionary.org,
wikimediafoundation.org,
w.wiki, wmfusercontent.org,
*.m.wikipedia.org,
*.wikimedia.org,
*.m.wikimedia.org,
*.planet.wikimedia.org,
*.mediawiki.org,
*.m.mediawiki.org,
*.wikibooks.org,
*.m.wikibooks.org,
*.wikidata.org, *.m.wikidata.org,
*.wikinews.org,
*.m.wikinews.org,
*.wikiquote.org,
*.m.wikiquote.org,

- - Intermediate and Root
CAs dont have multiple
access points in the form
of multiple alternative
names.

Also, Wikipedia has a
large number of SANs
with wildcard entries
possible.

5

*.wikisource.org,
*.m.wikisource.org,
*.wikiversity.org,
*.m.wikiversity.org,
*.wikivoyage.org,
*.m.wikivoyage.org,
*.wiktionary.org,
*.m.wiktionary.org,
*.wikimediafoundation.org,
*.wmfusercontent.org,
wikipedia.org

Certificate
category: Single
domain,
wildcard or
Multi-domain
SAN/UCC cert?

Multi-Domain (SAN/UCC) Single Domain/Explicit Name Single Domain/Explicit Name
The end-User server
needs multiple domains
for multiple entries
points to the server, so
SANs are more there
with multi-domain.

Public Key Info
like key algo,
key length,
public exponent
(e) in case of
RSA

Elliptic Curve Public Key
(id-ecPublicKey), 256 bit, 65537
(0x10001)

Elliptic Curve Public Key(
id-ecPublicKey), 384 bit,
65537(0x10001)

rsaEncryption, 2048 bits, 65537
(0x10001)

Increasing number in the
Public Keys bits size.

Even though RSA or
ECDSA has been used
for certificate signing,
ECPK is preferred for
Asymmetric Key
Cryptography.

6

Public key or
modulus (n) in
case of RSA

04:e8:50:2c:d0:d2:4e:a2:b1:92:a
a:b6:73:0f:cf::b4:57:e5:c2:c0:7c:
ae:6e:55:91:4a:a6:94:67::a5:f8:b
0:3f:46:ac:23:52:b4:48:3b:64:64:
fb::cd:e9:e4:fb:8f:10:a7:f4:e8:23:
ba:95:29:6e: :ca:72:bb:83

04:c1:1b:c6:9a:5b:98:d9:a4:29:a0
:e9:d4:04:b5::eb:a6:b2:6c:55:c0:f
f:ed:98:c6:49:2f:06:27::cb:bf:70:c
1:05:7a:c3:b1:9d:87:89:ba:ad:b4::
17:c9:a8:b4:83:c8:b8:90:d1:cc:74
:35:36:3c::72:b0:b5:d0:f7:22:69:c
8:f1:80:c4:7b:40:8f::68:87:26:5c:
39:89:f1:4d:91:4d:da:89:8b:e4:
03:c3:43:e5:bf:2f:73

00:e2:3b:e1:11:72:de:a8:a4:d3:a3:57:a
a:50:a2::0b:77:90:c9:a2:a5:ee:12:ce:9
6:5b:01:09:20::01:93:a7:4e:30:b7:53:f
7:43:c4:69:00:57:9d::8d:22:dd:87:06:
40:00:81:09:ce:ce:1b:83:bf::cd:3b:71:
46:e2:d6:66:c7:05:b3:76:27:16:8f::9e:
1e:95:7d:ee:b7:48:a3:08:da:d6:af:7a:0
c::06:65:7f:4a:5d:1f:bc:17:f8:ab:be:ee
:28:d7::7f:7a:78:99:59:85:68:6e:5c:23
:32:4b:bf:4e::e8:5a:6d:e3:70:bf:77:10:
bf:fc:01:f6:85:d9::44:10:58:32:a9:75:
18:d5:d1:a2:be:47:e2:27::f4:9a:33:f8:
49:08:60:8b:d4:5f:b4:3a:84:bf::aa:4a:
4c:7d:3e:cf:4f:5f:6c:76:5e:a0:4b:37::9
e:dc:22:e6:6d:ce:14:1a:8e:6a:cb:fe:cd:
b3::64:17:c7:5b:29:9e:32:bf:f2:ee:fa:d
3:0b:42::ab:b7:41:32:da:0c:d4:ef:f8:8
1:d5:bb:8d:58::b5:1b:e8:49:28:a2:70:
da:31:04:dd:f7:b2:16::4c:0a:4e:07:a8:
ed:4a:3d:5e:b5:7f:a3:90:c3:af:27

We have a varied public
key size that is why we
have varied key length.

2048 for Root CA that is
why the key is having
more characters.

Key usages; how
do they vary in
the chain?

Digital Signature, Server
Authentication, Client
Authentication

Digital Signature, Certificate
Sign, CRL Sign, TLS Web
Server, Authentication, TLS Web
Client Authentication

Digital Signature, Certificate Sign,
CRL Sign

The usages are marked
as critical which means
that the certificates
should only be used for
the specified purpose
and nothing more.

7

The end-user can’t sign
off on CRL with their
certificate whereas the
CAs can.

Basic
constraints, how
do they vary in
the chain?

Critical Critical

Maximum number of
intermediate CAs: 0

Critical

Maximum number of intermediate
CAs: unlimited

Intermediate CA here
cannot certify another
CA
Whereas the root can
certify an unlimited
number of intermediate
CAs.

Name
constraints (if
any), how are
these useful?

CA: FALSE CA:TRUE, pathlen:0 CA:TRUE, pathlen:1 End User doesn't have
the name field CA: True
as it is not a CA. Such
will help us in the
identification of the
end-user subjects.

The end-user certificate
is missing pathlen,
which might be because
it is the final issued
certificate.

Also, the pathlen value
is decreasing down the

8

trust hierarchy

Size of the
certificate

2982 Bytes 1504 Bytes 1360 Bytes As the end-user
certificate needs to
incorporate the
information of the entire
hierarchy, the size of the
tbsCertificate is bound to
be larger in comparison
to intermediate CAs, So
the key size for end-user
might be more than CAs.

Any other
parameters that
you found
interesting?

CRL Distribution Point
http://crl4.digicert.com/DigiCert
TLSHybridECCSHA3842020C
A1-1.crl

Certificate
Policies:2.23.140.1.2.2

CRL Distribution Points:

URI:http://crl3.digicert.com/Digi
CertGlobalRootCA.crl

Policy:2.16.840.1.114412.2.1
Policy: 2.23.140.1.1
Policy: 2.23.140.1.2.1
Policy: 2.23.140.1.2.2
Policy: 2.23.140.1.2.3

No CRL Distribution
Points or Policies for
Root CA which suggests
that Root CA does not
maintain a CRL list.

9

http://crl4.digicert.com/DigiCertTLSHybridECCSHA3842020CA1-1.crl
http://crl4.digicert.com/DigiCertTLSHybridECCSHA3842020CA1-1.crl
http://crl4.digicert.com/DigiCertTLSHybridECCSHA3842020CA1-1.crl
http://crl3.digicert.com/DigiCertGlobalRootCA.crl
http://crl3.digicert.com/DigiCertGlobalRootCA.crl

Answer the following queries after filling out the above table:
1. Which certificate type (DV/OV/IV/EV) is more trustable and expensive?

EV or Extended Validation Certificate Type is the most trustable and expensive because it involves a complete background
check and is mostly relevant for e-commerce and banking companies as it involves a lot of financial transactions and sensitive
information. Also, we know that the sequence of expensive certificates is: EV>OV>IV>DV which is completely based on the
approach and extent to verification of the individual/organization per its domain/certificate claim.
Looking at the table above, since Wikipedia is not an organization that works with sensitive information but an organization
nevertheless, organizational validation is needed and seems to be enough.

2. What is the role of the Subject Alternative Name (SAN) field in the X.509 certificate?
The role of the Subject Alternative Name (SAN) field in the X.509 certificate is to certify a large number of domains
(200-300) (included in the Fully Qualified Domain Name(FQDN) list which are the variants of the Common Name) using a
single certificate. Each of these domains in turn can be used to represent a particular access point within the organization.

Looking at the table above, we can see that Wikipedia has a bunch (39 in total) of SANs (for example:*.wikipedia.org,
wikimedia.org, mediawiki.org, wikibooks.org, wikidata.org, wikinews.org, wikiquote.org, wikisource.org, wikiversity.org,
wikivoyage.org) that represent different access points (routes), different domains but are verified using a single certificate.
Having so many alternative names allows the organization to redirect users to a single entry point in their website with
different access points(subdomains/alternative names), a common example would be a typing error in the domain name.

3. Why are key usages and basic constraints different for root, intermediate, and end certificates?
The constraints and the key usages of the digital or SSL certificates are based on the individual/organization/ authority that is
either claiming or certifying the certificate (for which the certificate is going to be used).
For example, end certificate users/subjects like en.wikipedia.org, youtube.com don’t need to perform any sort of signature or
webs server verifications. Such certificates of end-users are simply to advertise that the communication in their website is
secure and certified to any connecting endpoints/subjects. Hence, a simple Client and Server Authentication using the Digital
Certificate is enough. Whereas, any intermediate certificate authority or root certificate authority needs to perform the update
of CRL entries, Sign off on the digital certificates. Also, the usages of the intermediate and root are pretty much the same as

10

intermediate CAs are designed to replicate and distribute the functionality of the Root.
The constraints serve a similar purpose. They define limits to which the certificates can be put into use. For an end-user, the
constraint specifying whether it is a CA is marked False (Ca: False) but the intermediate subjects have it marked TRUE. The
constraint with the maximum number of CAs is included in the certificates for CAs as it allows the subject to issue a certificate
to an intermediate CA, which is why Root has the same field set to “unlimited”. The pathlen also follows the same objective.
pathlen=0 means that the certificate cant be used to certify another CA whereas “1” means issuing, renewing is allowed using
the certificate.

Constraints extended to the SSL Certificate/ Digital Certificate can be found here: RFC.

4. What is the difference between the Signature value and the Thumbprint of a digital certificate?
First and foremost, the signature in the certificate is generated using the private key of the Certificate Authority (CAs) that
binds the domain (corresponding to a server) of an end-user to their public key. The tbsCertificate part of the actual digital
certificate is used to generate the digest using a hash function which in turn is encrypted with an encryption algorithm (with
keys of the certificate authority) to generate the signature. The digital certificate for a domain is the mark of encrypted, secure,
and trusted communications within that particular domain.
Unlike that, the thumbprint of a digital certificate is generated using the entire certificate as input to a hashing function like
SHA-1, MD5, or SHA-256. These hash outputs or fingerprints can be used to identify/index/categorize the actual digital
certificate within a certificate authority. So, when a CA wants to get a digital certificate from its certificate database/store, it
can use this hash to get it.
A common wordplay would also show the message digest (generated from tbsCertificate) in the case of digital certificates,
which can also be called a “Thumbprint” or “fingerprint” that identifies the tbsCertificate(the bulk of the digital certificate).
This suggests that a thumbprint can be quoted as the result of a hash function (also known as a thumbprint algorithm).
Hence, a signature value identifies a domain with its public key generated by the CA using their private key whereas a
thumbprint is simply a digest generated using a hashing algorithm.
Looking at the table, the signature value for each of the certificates is significantly larger than the thumbprint, which based on
the concept is clear.

11

https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.9

5. Why do RSA key lengths increase over the years? Why is ECDSA being preferred over RSA nowadays?
RSA algorithm works by taking two large prime numbers (p and q) and generating n (), e, and d values based on
them. The entire security and encryption of the RSA heavily rely on the fact that it is very difficult to factorize n to p and q.

n, e, and the ciphertext () are public information so it is possible to get the actual message (m) using different𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑛
techniques but it is believed that it will take trillions of years when tried with the brute force approach as factoring the number,
n is a huge computational cost. Taking it one more step, since we are looking at only the prime numbers that make up the
factors of n, it won't be a naive brute force algorithm, rather it will be significantly less than trying out all the combinations.
With increasing computational power in recent years, a huge number of calculations and alternative choices can be explored. It
is now actually possible to break the RSA encryption algorithm by trying out a brute-force algorithm to get its factors. With
1024 bits in each prime number, we have a maximum of 2048 bits for n, which is less than 10^300 possible combinations. But
if we increase the number of bits in prime numbers we would have even more combinations which will require more
computational power (objective for it to require such a huge computational power that is not available and will not be available
anytime soon).

So, the conclusion we drew from the above discussion is that for an increased level of security we need to increase the key
length in RSA.
Now, we have ECDSA, which achieves the same level of security as RSA but with a lot fewer key lengths. For example, if
RSA achieves level x security with 1024 bits key length, ECDSA achieves the same level, x with much less key length. (from
160-230). Alternatively, with the same key length for RSA and ECDSA, ECDSA achieves a higher security level (by security
level, we mean the time taken for brute force algorithm to find the factors of n). Having a shorter key length requires less
encryption time which means an increase in the performance of authentications. So, because of the decreased key lengths and
increased performance ECDSA is starting to get preference over RSA.

12

6. What are the pros and cons of pre-loading root and intermediate certificates in the root stores of browsers and OSes?

CAs especially Root CAs play a vital role in the Public Key Infrastructure (PKI) during verification of the certificate and
ensuring the connection established is a secure one. A Digital certificate for a subject will contain its public key that the other
communicating subject will use to encrypt the messages. But before that, we need to get that public key from within the digital
certificate.
A DC will be signed by CA using their private key and to retrieve the public key for the subject, the subject should use the
public key of the CA that was preloaded to quickly decrypt the DC and get the public key. This helps in the efficient retrieval
of the public keys from the DC. That is one less communication overhead to search the public key of the CA for the subject
over the internet before establishing any communication.
One con of pre-loading the root and intermediate certificates would be to update the list every time a new root or new
intermediate CAs are added to the list. If such regular update fails there might be a case when an intermediate CA whose
certificate was revoked can still verify the subject’s certificate and establish an unsecured connection or there might be a new
authorized intermediate CA added by a root but due to lack of update not added in the root stores of browsers/OSes, because of
it, even a secure connection can be flagged as insecure.

7. Why are root CAs kept offline?

Root CAs hold a very important function and the highest level of trust in the entire PKI hierarchy. One of the vital functions of
a root CA is to issue certificates to intermediate CAs that in turn work to issue certificates to the subject. Because of the same
Root, CAs are a prime target for the hackers, issuing false certificates to subjects, intermediaries will present a huge downside.
For example, Imagine three intermediate CAs that issue digital certificates to 10 subjects. This makes certificates to 3X10 = 30
subjects under a single root CA. When that single root gets compromised, hackers can infect the entire 30.

Since this downside is too much and would take a significant amount of time and resources to revert back, root CAs are kept
offline and only brought online when needed to deduct the exposure time for outside unauthorised interventions. Offline is
purely a precaution for minimal risk management.

13

8. List out names of OS/Browser/Company whose root stores are pre-populated with Root and Intermediate CA
certificates of the website #N?
DigiCert TLS Hybrid ECC SHA384 2020 CA1 and DigiCert Global Root CA are the intermediate and root CA respectively.
Since they are both based on DigiCert Inc, the question can be formulated as Listing out names of OS/Browser/Company
whose root stores are pre-populated with certificates from DigiCert Inc.

The following table contains the list of operating systems and browsers whose stores are pre-populated with certificates issued
by DigiCert Inc.

Certificate Authority Operating System
(pre-populated with the corresponding
certificate)

Browser
(pre-populated with the corresponding
certificate)

Root Certificate Authority

DigiCert Global Root CA

Intermediate Certificate Authority

DigiCert TLS Hybrid ECC
SHA384 2020 CA1

● Access
● Android
● BlackBerry OS
● Brew
● Chrome OS
● Debian
● HP-UX
● iOS
● Mac OS X
● Meego
● Palm OS
● Palm WebOS
● SUSE Linux
● Ubuntu
● Windows (all versions)

● AOL 5+
● Boxee
● Camino 1.0+
● Chrome
● Firefox 1.0+
● Grandstream
● Internet Explorer 5+
● Konqueror 2.2.1+
● Maxthon
● Microsoft Edge
● Mozilla 7.0+
● Netscape 4.5+
● Opera 5+
● Safari
● Sony Playstation

14

● Windows CE
● Windows Mobile
● Windows Phone 7
● Windows Phone 8
● Windows Server (all versions)

● Nintendo Wii

Reference to the above list: DigiCert SSL Compatibility

15

https://www.digicert.com/faq/compatibility.htm

PART-B
1. You have received the digital certificate of website #N over email. How do you verify whether the certificate is valid without

using any online tools or browsers? Write a pseudo-code of your verifier function named myCertChecker() and explain how it
works by picking the entire chain of trust of an end-user cert (of the website #N) in PART-A of this assignment.

It is very important to verify the validity of the certificate, first to make sure that the right parties are communicating in
between, and secondly to establish secure communication. On receiving a certificate, be it over an email or before the start of
a conversation, there are a number of validity checks that the certificate must pass before communication can be started.
The prerequisites for the function to validate the certificate are

1. The actual digital certificate
2. Current Date and Time

The following functions explain the pseudocode (written in PYTHON) for the function myCertChecker() to verify the
certificate:

def parse_certificate(certificate, **kwargs): # kwargs = Keyword Arguments
"""Contains the entire certificate in JSON"""

def get_key_from_store(name_of_CA):
"""Returns Public key based on the name of Certificate Authority"""

def parse_key(key):
""”Parses p,q,n,e,d based on the values of key"""

def query_CRL(URL, SN):
"""Returns the revocation status by looking at the CRL list based on the SN"""

16

def query_OCSP(URL, SN):
"""Returns the revocation status by querying the OCSP Server based on SN"""

def myCertChecker(digital_certificate, today):
"""Function to check the validity of the digital certificate
1. Integrity Check: Verification of the Signature
2. Validity of the Certificate
3. Revocation Status Check """

"""Generate message digest using tbs"""

Get the tbsCertificate portion from the digital_certificate
tbsCertificate = parse_certificate(digital_certificate, tbs=True)

Get the Signature Hash and Signing Algorithm
hash, encryption = parse_certificate(digital_certificate, sign_algorithm=True)

Use the information of hash and tbs to get the message digest
message_digest_from_tbs = hash(tbsCertificate)

"""Generate Message Digest from Signature Value"""

Get Signature Value from digital_certificate
sign_value = parse_certificate(digital_certificate, sign=True)

Get the public key of the Certificate Authority from root stores
pub_key = get_key_from_store(parse_certificate(digital_certificate, name_CA=True))

17

Parse the values of (n,e) from public key
n, e = parse_key(pub_key)

Generate the message digest using the signature value from certificate
message_digest_from_sign = (sign_value**e) % n

""" Verify the integrity of the certificate: No Certificate Tampering"""
if message_digest_from_tbs == message_digest_from_sign:

valid_from, valid_to = parse_certificate(digital_certificate, validity=True)

""" Checking the Validity of the certificate"""
if (valid_from < today and valid_to >= today):

serial_no = parse_certificate(digital_certificate, sn=True)

Querying CRL Distribution Points to check the revocation status
crl_path = parse_certificate(digital_certificate, crl_path=True)
CRL_revocation_status = query_CRL(crl_path, serial_no)

Querying OCSP Server to check the revocation status
ocsp_server = parse_certificate(digital_certificate, ocsp_server=True)
OCSP_revocation_status = query_OCSP(ocsp_server, serial_no)

""" Checking the Revocation Status"""
if CRL_revocation_status and OCSP_revocation_status:

Certificate is VALID
return True

else:
Certificate has been revoked.

18

return False
else:

Certificate has expired.
return False

else:
Certificate has been compromised.
return False

MAIN FUNCTION
myCertChecker(_.wikipedia.org, "2022-01-30 06:42:55.581381")

The above pseudo-code checks for the following:
1. Verification of the Signature
2. Validity of the Certificate
3. Revocation Status of the Certificate

To implement the same checker to verify the certificate of en.wikipedia.org, we first download/export the digital certificate in CER or
PEM format [X.509 Certificate in PEM format (application/pkix-cert+pem)]. We use a parser for the certificate to get each and every
detail in the form of keywords and values so that we can get a particular value when needed.
The following figure shows the same:

19

http://en.wikipedia.org

We start by validating the integrity of the certificate. We take the tbsCertificate portion of the Digital Certificate that is in plain text
format to generate the message digest using the signing (hashing and encrypting) algorithm: ecdsa-with-SHA384. Here we use the
properties shown in the above figure for Wikipedia to generate the digest.
Similarly, we retrieve the message digest, from the signature value, that was signed by the CA, DigiCert TLS Hybrid ECC SHA384
2020 CA1, signed using their private key, and retrieved using the public key of CA (Digicert). Comparing these two digests should
give us the idea of whether the certificate while being sent via Email has been tampered with or not. Here the signature value (384
bits) was the following:

20

30:66:02:31:00:cd:aa:e8:16:18:0b:5e:de:24:bc:44:76:f3:a3:e5:1e:a5:03:19:52:7e:fe:57:2c:0b:fe:e2:af:b4:67:3e:6a:82:08:36:ce:01:60:3
0:8b:5b:a3:4e:50:27:1f:de:02:02:31:00:8e:fb:20:28:7e:b5:cf:df:1f:90:99:09:83:b0:77:70:6f:e0:94:3f:9d:59:7d:ca:6c:21:69:2e:69:d2:cc:
0f:e9:ac:53:c4:93:c2:9c:d6:83:96:e5:73:39:72:7d:9c

If not, we confirm that the certificate is not tampered with and we can move further with our checks.
We now check the validity of the certificate by looking at the valid till date (validity depends on how long has the certificate been
issued). If validity fails, we can no longer guarantee secure communication. Here as we can see in the figure above, the validity of the
certificate is till Nov. 17, 2022, 11:59 p.m. So, the certificate successfully passes the validity check.

After a validity check, we need to see if the certificate has been revoked or not? For that, we need to query the OCSP server for the
revocation status or check the Certificate Revocation List (CRL) if the certificate has been included in the CRL list that marks the
revocation of certification status. The thumbprint or a serial number of the certificate is used for the same purpose.

21

The above figure shows the URLs for the CRL list and the OCSP server. Here, the CRL List and the OCSP server are maintained by
the Digicert, Intermediate CA. The pseudo-code looks for the certificate of Wikipedia using the serial no:
02:7D:94:1B:29:2C:DB:2E:DA:F9:93:11:18:53:74:3E (3310497047411526733060757196035552318) in the CRL list and queries the
OCSP server using the same. If the certificate is found in either of them, then the certificate is found to be revoked and the
communication might not be secure. The process can be more streamlined using OCSP Stapling when websites like Wikipedia attach
the OCSP Revocation Status with DIgital Certificate while trying to establish connection. Since, we are only referring to the certificate
and its checks we do not worry about the stapling of OCSP status.

Now, if we have to look at the validity of the certificate for Digicert, which is an Intermediate CA here, we have to perform the same
checks taking DigiCert TLS Hybrid ECC SHA384 2020 CA1 as subject and the root as DigiCert Global Root CA.

With all the three checks completed, we can say that the certificate for the subject, Wikipedia is VALID.

The full pseudo-code can be viewed here. Pseudo-Code for Certificate Checker

Apart from the above checks, we can also implement a permitted subtrees check based on the named constraint which indicates that if
a subject contains the common name or any name in the subject’s alternative name that is not based on the permitted subtrees, that
particular certificate can be declared as invalid.

22

https://colab.research.google.com/drive/18K_YBLg5KxDdLxHDuynomrD3oVBcrVbP?usp=sharing

2. Consider the scenario in which evil Trudy has used the digital certificate of the website (Bob) named abc.com to launch her
own web server with the domain name, xyz.com. Does your function myCertChecker() return valid or invalid for this when
someone like Alice tries to access Trudy's website xyz.com from a browser like Chrome/Edge/Firefox?

Currently, if Trudy duplicates the digital certificate of Bob (abc.com) and launches her new website xyz.com, the function
myCertChecker() returns valid (saying that the certificate is authentic) which is because of the fact that it doesn't consider the
verification of the common name or subject’s alternative name. An integral part of the verification of the digital certificate
of any website/subject is the verification of the common name and the subject’s alternative name. What this verification
does is it matches the digital certificate with the website that is being accessed. Failing this verification means that a third party
has used the cloned/downloaded/stolen digital certificate for a cloned website from a different web server.
Hence, In addition to the above pseudo-code, we need to add the following snippet to verify the sans and common name:

""" Checking the Revocation Status"""
if CRL_revocation_status and OCSP_revocation_status:

cn, sans = parse_certificate(digital_certificate, cn_sans=True)

"""Verification of Common Name and Subject's ALternative Name"""
if domain_name == cn or domain_name in sans: # domain_name = Domain Name of the website being accessed (xyz.com)

Certificate is VALID
return True

else:
Certificate doesn't have valid CN/SANs.
return False

else:
Certificate has been revoked.
return False

The full pseudo-code can be viewed here. Pseudo-Code for Certificate Checker

23

https://colab.research.google.com/drive/18K_YBLg5KxDdLxHDuynomrD3oVBcrVbP?usp=sharing

3. Consider the scenario in which evil Trudy has used the digital certificate of Bob's website abc.com to launch her own web
server with the domain name, xyz.com. When a web client (Alice) tries to connect with Bob’s website abc.com by sending a
DNS query, Trudy responds with her IP address by launching a MITM attack (What is DNS cache poisoning? | DNS spoofing |
Cloudflare). Does your function myCertChecker() returns valid or invalid for this and what are the consequences? What kind
of attacks can Trudy launch in this scenario?

Our scenario is, Trudy has used the digital certificate of Bob's website abc.com to launch her own web server with the domain
name, xyz.com. When a web client (Alice) tries to connect with Bob’s website abc.com by sending a DNS query, Trudy
responds with her IP address by launching a MITM attack.
Here, Trudy can launch a MITM attack in two ways:

1. She can intercept the DNS request from Alice, and as a response to that UDP request, she can send her own cloned
website’s IP address to Alice. Alice will still think that she is talking to Bob’s website abc.com but she would actually
be talking to Trudy’s Website (xyz.com).

2. Or Trudy can poison the DNS Cache that stores the IP of websites for quick access and instead of redirecting the
abc.com query to Bob’s web server, Trudy redirects the request to her own web server.

Reference: What is DNS cache poisoning? | DNS spoofing | Cloudflare
24

https://www.cloudflare.com/en-in/learning/dns/dns-cache-poisoning/
https://www.cloudflare.com/en-in/learning/dns/dns-cache-poisoning/
https://www.cloudflare.com/en-in/learning/dns/dns-cache-poisoning/

The function myCertCheckert() is designed to validate the authenticity and integrity of the digital certificate. Since Trudy has used the
digital certificate of Bob’s website abc.com with her own web server xyz.com, the certification test will return INVALID by failing
the common name and SANs verification check.

But this verification check is only possible after the request for DNS of abc.com by Alice has been compromised by Trudy and
redirected to xyz.com. (Case of DNS cache poisoning). So the steps involved are

1. Get the DNS of abc.com
2. Validate the Certificate
3. Establish a secure connection

The function myCertChecker() is used to validate the second step but Alice’s request has already been compromised in the first STEP.
Now, to make sure that the IP returned as a request to the DNS query (UDP) is the actual IP of abc.com not of a fake website like
xyz.com, we need to make sure that DNS request/cache hasn't been compromised.

Let’s say we don't perform common name or SANs validation for xyz.com (impersonating as abc.com), then Trudy can launch all
sorts of MITM or WITM attacks like Impersonation, Denial of Service Attacks, Hijacking. Trudy won't be able to affect the integrity
of the messages as Alice will be encrypting all the messages using Bob’s Public key (requiring Bob’s private key to decrypt), even
though all other attacks are possible. As a consequence, the availability of the website abc.com will be compromised.

One way of verifying that the response hasn't been compromised and is sent from an actual authoritative name server for abc.com, we
need DNSSEC (DNS Security) which makes the use of PKI to sign the IP response to every DNS query and validates the integrity of
response and is not tampered with in between by anyone like Trudy.

25

7-zip
Briefly explain how 7-zip uses the password to encrypt compressed files using secure hash and symmetric algorithms. What role does
the password length play in brute force attacks to decrypt the encrypted files?

Open-source software like 7-zip are examples of AES encryption with CBC mode in practice. Such software uses a function called
Password-Based Key Derivative Function (PB-KDF) [Version 2] using two input parameters; PWD (password for encryption) and a
random variable, SALT.
Such functions are nothing but secure hash algorithms that generate the digest using password and SALT as shown in STEP 1 of the
figure below.

26

So, The output of such a function is also known as Digest which is now used as an input to symmetric algorithms like AES in CBC
mode.
Now, we have the digest which is separated into the Initialization Vector(IV) and Key(K) which in turn are the inputs to the symmetric
encryption algorithm, here we have AES in Cipher Block Chaining Mode (CBC) that converts the plain text or input file to an
encrypted text/cipher text or encrypted output file.

Let's say a brute force attack is intended to be launched to decrypt the ciphertext generated using the above process. The attackers
have the SALT values, the DIGEST, and the Cipher Text. All they need now is the PWD to break the encryption and reveal the actual
plain text. If they have the PWD value they can generate the digest using SALT and PWD by feeding it to the Hashing algorithm. With
the generated digest they can compare with the original digest to check if the password is right or not, giving them a feedback brute
force loop to crack the passwords. The attackers need to try out the entire combination of PWDs to figure out the actual PWD, hence
the brute force approach.

So, let us have L = Length of password, and characters of PWD are ASCII characters (128 in number).

Now, the possible combination of PWDs that can be formulated with given assumptions is

.𝑁𝑜 𝑜𝑓 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑𝑠 = 128
𝐿

So, increasing the length of the password, the number of possible combinations increases exponentially, as does the time to
break it.

If L = 25, for the same conditions, we have possible combinations of passwords. Saying it takes 2 12825 = 4. 7890486𝑒 + 52
seconds to try out one combination (Depends on the actual hashing algorithm we use to generate the digest), it will take around

which is very very difficult to execute with4. 7890486𝑒 + 52 / 2 = 2. 3945243𝑒 + 52 𝑠𝑒𝑐 = 7. 5929867𝑒 + 44 𝑦𝑒𝑎𝑟𝑠
current computing resources.

Hence, the length of PWD passwords plays a vital role in determining whether the encrypted file can be decrypted by attackers or not
using Brute Force Approach.

27

PLAGIARISM STATEMENT
I certify that this assignment/report is my own work, based on my personal study and/or research and that I have acknowledged all
material and sources used in its preparation, whether they be books, articles, reports, lecture notes, and any other kind of document,
electronic or personal communication. I also certify that this assignment/report has not previously been submitted for assessment in
any other course, except where specific permission has been granted from all course instructors involved, or at any other time in this
course, and that I have not copied in part or whole or otherwise plagiarised the work of other students and/or persons. I pledge to
uphold the principles of honesty and responsibility at CSE@IITH. In addition, I understand my responsibility to report honor
violations by other students if I become aware of it.

Name: Kamal Shrestha
Date: Jan 30, 2022
Signature: K.S.

28

