
Assignment 6: Secure chat using openssl and MITM

attacks

It’s a group project with Max of 3 students per group playing the roles of
Alice/Bob/Trudy! Check Appendix A to know your group details.

In this programming assignment, your group will implement a secure peer-to-peer chat
application using openssl in C/C++/Python and demonstrate how Alice and Bob could chat with
each other using it. Plus you will also implement evil Trudy who is going to intercept the chat
messages between Alice and Bob by launching various MITM attacks.

Setup:
Each group will be given a dedicated QEMU-KVM VM with the IP address (192.168.51.xw) in
NeWS lab’s cloud for completing this assignment. Refer Appendix B for some help on how to
work with containers. The VM runs three LXD containers (one LXD container each for Alice,
Trudy and Bob in the VM provided) which are configured in a star topology i.e., with the switch
at the center, Alice, Bob, Trudy are connected to switch ports. Make a note of hostnames
assigned to Alice, Trudy and Bob from your VM. DNS is already set up properly so ping
using hostnames from Alice to Bob and vice-versa works. Under normal circumstances, Trudy
does not come in the traffic forwarding path between Alice and Bob. But when DNS is poisoned
by Trudy, all traffic between Alice, and Bob is intercepted by Trudy as the MITM attacker. You
can also launch a similar MITM attack using ARP cache poisoning.

Please upload ssh public key to your github profile and share your github user-id with
TAs to get access to your group’s VM through IITH’s Wireguard VPN (if you are not on the
campus). The three LXDs are reachable from inside the VM, and cannot be reached from
campus LAN.

Task 1: (10M)
Use the OpenSSL commands to create a root CA certificate (V3 X.509 certificate, self-signed
using 512-bit ECC Private Key of the root), a certificate of Alice (issued i.e., signed by the root
CA) and a certificate of Bob (issued by the root CA). Ensure that you provide realistic meta-data
while creating these X.509 V3 certificates like values for CN/SAN, OU, L, Country, etc of your
choice with appropriate key usage/constraints. Save these certificates as root.crt, alice.crt and
bob.crt, save their CSRs and key-pairs in .pem files and verify that they are valid using openssl.
You can complete this task either on the VM provided (recommended) or on your local machine.

How to communicate among LXDs and between VM and LXD?
You can use the Linux based commands like SCP for transferring the files like CSRs and certs.
You have to be sure about the integrity and clearly, show that the files transferred are indeed
sent by the intended sender and received by the intended receiver. For example, if you send the
CSR to the Signing Authority (root CA), then the signing authority should be able to verify that it
is sent by the intended sender and similarly when receiving the certificate back it should be
verified that it is indeed signed and sent by the actual authority. You can use signing and
verification concepts applied in the Openssl tutorial for this.

Task 2: (20M)
Write a peer-to-peer application (secure_chat_app) for chatting which uses TLS 1.3 and TCP
as the underlying protocols for secure and reliable communication. Note that the
secure_chat_app works like HTTPS except that here it’s a peer-to-peer paradigm where
Alice plays the role of the client and Bob plays the role of the server (half-duplex
communication). The same program should have different functions for server and client code
which can be chosen using command line options “-s” and “-c <serverhostname>” respectively.
Feel free to define your own chat headers (if necessary) and add them to the chat payload
before giving it to TLS/TCP. Make sure that the application uses only the hostnames for
communication between Alice and Bob but not hard-coded IP addresses (refer
gethostbyname(3)). The application should perform the following operations:

a) Establish a TCP connection between Alice and Bob. Bob starts the app using
“secure_chat_app -s”, and Alice starts the app using “secure_chat_app -c
bob1”

b) Alice sends a chat_hello message to Bob and Bob replies with a chat_reply message. It
works like a handshake at the application layer. Note that these messages are sent in
plain-text. Show that it is indeed the case by capturing pcap traces at
Alice-LXD/Bob-LXD.

c) Alice initiates a secure chat session by sending out a chat_STARTTLS message and
getting chat_STARTTLS_ACK from Bob. Your program should load the respective
private key and certificate for both Alice and Bob. Furthermore, each of them should
have pre-loaded the certificate of the root CA in their trust stores.

i) For example, if Alice sends a chat_STARTTLS message to Bob, upon parsing

the message, Bob initiates replies with chat_STARTTLS_ACK. Upon parsing this
ACK from Bob, Alice initiates TLS 1.3 handshake by first sending a client_hello
message as we discussed in the TLS lesson.

ii) Alice gets the certificate of Bob and verifies that. She also provides her certificate
to Bob for verification. So, Alice and Bob use their certificates to perform mutual
aka two-way authentication.

d) Upon establishing a secure TLS 1.3 pipe, it is used by Alice and Bob to exchange their
encrypted chat messages. Show that it is indeed the case by capturing pcap traces at
Alice-LXD/Bob-LXD.

e) Either of them sends a chat_close message which triggers closure of TLS connection
and finally TCP connection.

Task 3: STARTTLS downgrade attack (20M)
Downgrade attack by Trudy by blocking the chat_STARTTLS message from Alice (Bob) to Bob
(Alice).

a) If Alice receives chat_STARTTLS_NOT_SUPPORTED message after sending
chat_STARTTLS to Bob, it is assumed that Bob does not want to have secure chat
communication.

b) In this attack, Trudy blocks chat_STARTTLS from reaching Bob and sends a fake reply
message chat_STARTTLS_NOT_SUPPORTED to Alice and thereby forcing Alice and
Bob to have unsecure chat communication for successfully intercepting their
communication. Show that it is indeed the case by capturing pcap traces at
Trudy/Alice/Bob LXDs.

c) You need to write a program (secure_chat_interceptor) to launch this downgrade
attack (-d command line option) from Trudy-LXD. For this task, you can assume that
Trudy poisoned the /etc/hosts file of Alice (Bob) and replaced the IP address of Bob
(Alice) with that of her. It’s a kind of DNS spoofing for launching MITM attacks. In this
attack, Trudy only plays with chat_STARTTLS message(s) and forwards the rest of the
traffic as it is.
To poison /etc/hosts file of Alice, Bob containers, use the following command from inside
the VM
bash ~/poison-dns-alice1-bob1.sh
To revert back the /etc/hosts file of Alice, Bob containers, use the following command
from inside the VM.
bash ~/unpoison-dns-alice1-bob1.sh
To start a downgrade attack, start the secure chat interceptor program using the
following command from inside the Trudy LXD.
./secure_chat_interceptor -d alice1 bob1

Task 4: (30M)
Active MITM attack by Trudy to tamper the chat communication between Alice and Bob. For this
task also, you can assume that Trudy poisoned the /etc/hosts file of Alice (Bob) and replaced
the IP address of Bob (Alice) with that of her.

a) Also assume that Trudy hacks into the server of root CA and issues fake/shadow
certificates for Alice and Bob. Save these fake certificates as fakealice.crt and
fakebob.crt, save their CSRs and key-pairs in .pem files and verify that they are indeed
valid using openssl.

b) Rather than launching the STARTTLS downgrade attack, in this case Trudy sends the
fake certificate of Bob when Alice sends a client_hello message and vice versa. This
certificate is indeed signed by the root CA, so it’s verification succeeds at Alice. So, two
TLS 1.3 pipes are set up: one between Alice and Trudy; the other between Trudy and
Bob. Trudy is now like a malicious proxy and decrypts messages from Alice to Bob (and
from Bob to Alice) and re-encrypts them as-it-is or by altering message contents as she
desires! Show that it is indeed the case by capturing pcaps at Trudy/Alice/Bob LXDs.

c) Enhance the secure_chat_interceptor program to launch this active MITM attack from
Trudy-LXD.
To start the MITM attack, start the secure chat interceptor program using the following
command from inside the Trudy LXD.
./secure_chat_interceptor -m alice1 bob1

When you build the tar file with filename as <RollNoX|RollNoY|RollNoZ>.tgz, have
separate subfolders for Alice, Bob, Trudy and the data (i.e., the certificates, keys, pcaps,
etc). Each of Alice/Bob/Trudy folders should have their own Makefiles with the targets
described in README instructions file.

Deliverables in GC as a tar ball:
● Readable Report cum Design Document enumerating steps followed with

screenshots for each of the important steps (10M)
○ Details of your chat protocol like its headers and typical message

flow. For example, HTTP uses GET/POST/OK methods for message
flow between client and server.

○ Details on how various MITM attacks are realized by Trudy
○ Credit Statement (2-pager): share an accurate and detailed

description of each of the group member’s contributions to the
assignment in terms of coding, report writing, bug fixes, etc.

The report should be self sufficient to understand what your group has done. You can add
screenshots to show the working of the system. All the tools and softwares used should be
mentioned with references. Reports should also list the important code snippets with
explanations. Simply attaching code without any explanation will not receive credits

● README file, Pcap traces collected with appropriate names and all Source
code (well documented like in GitHub - openssl/openssl: TLS/SSL and
crypto library), keys, certificates, etc in appropriate folders (10M)

https://github.com/openssl/openssl
https://github.com/openssl/openssl

PLAGIARISM STATEMENT <Include it in your report>

We certify that this assignment/report is our own work, based on our personal
study and/or research and that we have acknowledged all material and sources
used in its preparation, whether they be books, articles, packages, datasets, reports, lecture
notes, and any other kind of document, electronic or personal communication. We also
certify that this assignment/report has not previously been submitted for
assessment/project in any other course lab, except where specific permission has been granted
from all course instructors involved, or at any other time in this course, and that we
have not copied in part or whole or otherwise plagiarized the work of other
students and/or persons. We pledge to uphold the principles of honesty and responsibility at
CSE@IITH. In addition, We understand my responsibility to report honor violations by other
students if we become aware of it.

Names:
Date:
Signature: <keep your initials here>
References:

1. OpenSSL Cookbook: Chapter 1. OpenSSL Command Line (feistyduck.com)
2. /docs/man1.1.1/man3/index.html (openssl.org)
3. OpenSSL client and server from scratch, part 1 – Arthur O'Dwyer – Stuff

mostly about C++ (quuxplusone.github.io)
4. ssl — TLS/SSL wrapper for socket objects — Python 3.9.2 documentation
5. Secure programming with the OpenSSL API – IBM Developer
6. Simple TLS Server - OpenSSLWiki
7. The /etc/hosts file (tldp.org)
8. PowerPoint Presentation (owasp.org)
9. SEED Project (seedsecuritylabs.org)

The assignment will be evaluated by the TAs on a scheduled date and time. If you do not
appear for this offline evaluation/viva, the assignment will be treated as not submitted.

Late Submission Policy: 10% penalty for each late day beyond the buffer days.

Bonus Marks (30 M): In this assignment, you emulated DNS poisoning by running
poison-dns-alice1-bob1.sh script written by TAs to manipulate the entries in the
/etc/hosts file. Instead you need to implement one of the following to get the bonus marks:

1. You need to first ensure that Alice/Bob sends DNS queries (over UDP) to a local resolver
which in turn contacts an emulated DNS infra (root servers and Authoritative Name
servers) and gets DNS response. Trudy tampers these responses so that the DNS
cache of the resolver is poisoned.

2. ARP cache poisoning where Trudy sends gratuitous fake ARP messages to Alice/Bob.
Refer this assignment https://seedsecuritylabs.org/Labs_20.04/Networking/ARP_Attack/
for launching this real MITM attack in your set up.

https://www.feistyduck.com/library/openssl-cookbook/online/ch-openssl.html
https://www.openssl.org/docs/man1.1.1/man3/
https://quuxplusone.github.io/blog/2020/01/24/openssl-part-1/
https://quuxplusone.github.io/blog/2020/01/24/openssl-part-1/
https://docs.python.org/3/library/ssl.html#
https://developer.ibm.com/solutions/security/tutorials/l-openssl/
https://wiki.openssl.org/index.php/Simple_TLS_Server
https://tldp.org/LDP/solrhe/Securing-Optimizing-Linux-RH-Edition-v1.3/chap9sec95.html
https://owasp.org/www-pdf-archive/DNS_Cache_Poisoning(OWASP_GHANA).pdf
https://seedsecuritylabs.org/Labs_20.04/
https://seedsecuritylabs.org/Labs_20.04/Networking/ARP_Attack/

Appendix A: (Group Details)

Group no. Member 1 Member 2 Member 3

1 Sai Varshittha Ponnam Akash Tadwai Amit Kumar

2 Revanth Rokkam Arkadeb Ghosh Divya Pathak

3 Ayan Kumar Pahari Harinder Kaur Nilesh Shivanand Kale

4 Gurpreet Singh K Shiv Kumar Devang Deviprasad Dubey

5 Pradhumn Kanase Pallavi Saxena Kamal Shrestha

6 Ravi Chandra Duvvuri Kishan Nayanbhai Bhinde Pratik Abhijeet Bendre

7 Raguru Sai Sandeep Satvik Padhiyar KOMMANA VIKAS

8 Nisha M Priyansha Tiwari Koustav Choudhury

9 VINTA REETHU
Madhvendra Singh

Chouhan Anwesha Kar

10 Suranjan Daw Rishabh Dongre MUDAVATH SHATHANAND SAI

11 Piyush Madhukar Dadgal Visakh Vijayan Sampath Kumar Sivampeta

12 Pamuluri Ravi Sankar PELLURI SRIVARDHAN TATIPELLY VAMSHI

13 Siddhesh Pratim Sovitkar Supriya Kumari Srivathsa L Rao

14 Yogesh Ahirwar Unnati Dixit Praveen Chandrahas

15 Bharti Sahu

Appendix B: Some help regarding the setup
● To login to the VM allocated, type ssh ns@192.168.51.xw command.
● To list out the containers inside the VM, use lxc ls command from inside the VM.
● To login to a container, use lxc exec <containername> bash command from

inside the VM.
● To logout from the respective container use exit command.
● To capture packet traces inside a container (eg. trudy1), use lxc exec trudy1 --

sudo tcpdump -i eth1 -nn not tcp port 22
● Root file-system of a container (eg alice1) is located as a subtree under its storage pool

/var/snap/lxd/common/lxd/storage-pools/default/containers/alice1/
rootfs

● To copy files from local system to remote system:
scp <filename> root@<destination-ip>:~/
To copy files from remote system to local system
scp root@<source-ip>:~/<filename> .

