
Decrypting TLS and HTTP(s) using Wireshark ++
Assignment 4

Kamal Shrestha

CS21MTECH16001

Feb 27, 2022

PART - A 2

PART - B 10

mailto:cs21mtech16001@iith.ac.in

PART - A
Decrypt TLS handshake and HTTPS messages between your browser and the web server of Bank X

Steps performed:

1. Setting SSLKEYLOGFILE environment variable, launched google chrome and Wireshark:

export SSLKEYLOGFILE="/home/kamal/sslkeyfile.log"

google-chrome

sudo wireshark

2. Packet Capturing started in Wireshark

3. Opened http://netbanking.hdfcbank.com/ in opened chrome browser as, 16001%4 + 1 = 2 => HDFC

4. Entered random Username and Password.

5. Packet capture stopped and saved the trace files (CS21MTECH16001.pcapng).

6. Added the SSL Key log file in Wireshark to decrypt the TLS and HTTPs messages.

2

http://netbanking.hdfcbank.com/

Before adding in the key log file, all the messages (handshake messages, Application data) were in encrypted format as shown with the ss below:

3

4

Now after providing the SSLKeyLog file into Wireshark, all the encrypted conversations have been decrypted and available in plain text as shown below:

5

6

7

8

9

PART - B
1. What browser did you use, what’s the version number?

I used Google Chrome to access the website and the version was: Google Chrome 98.0.4758.102 as shown in the screenshot below:

10

2. List out various protocols that you noticed in the column named “Protocol” in the Wireshark GUI from the time you keyed in the hostname of the
bank in the browser till you start viewing application data. For each such protocol, mention its purpose in brief.

The following were the protocols seen from Client Hello to Application Data:

11

1. TLSv1.2
TLS1.2 is a transport layer security protocol that is built on top of TCP to ensure secure encrypted communication between the
communicating parties to maintain the confidentiality of the exchanged message, the integrity of the message from outside/middle intruders,
and the authenticity of the communicating parties.

2. TLS v1.3
TLS 1.3 is an improved version of 1.2 that requires less handshake time, provides a more secure cryptographic encryption, reduced roundtrip
time, streamlined key exchange, and overall more security.

3. TCP
TCP is one of the principal internet transport protocols that ensure reliable and in-order delivery of packets from source to destination with
proper congestion control and a dedicated connection setup.

4. UDP
UDP is the best effort internet transfer protocol that doesn't ensure any reliability, in-order delivery, or any flow control mechanisms. It
simply is the best effort protocol that is used for applications that require high-speed delivery of data with less constraint incomplete delivery
like in VoIP, real-time video streaming, etc.

5. HTTP2
HTTP2 is an application layer protocol, an improved version of HTTP1.1, that is used to fetch, change or delete resources, information, or
any data from a server. An improved version of HTTP1.1 ensures increased flexibility at the server and mitigates HOL Blocking (decreased
delay in multi-object HTTP requests).

3. Each of the TLS records begins with the same three fields (with possibly different values). One of these fields is “content-type” and has a length of
one byte. List all three fields and their lengths for the first 10 records in the trace.

Records Fields Lengths

1 Content-Type Handshake (22) 1 Byte

Version TLS 1.0 2 Bytes

Length 512 2 Bytes

12

2 Content-Type Handshake (22) 1 Byte

Version TLS 1.2 2 Bytes

Length 508 2 Bytes

3 Opaque-Type Change Cipher Spec (20) 1 Byte

Version TLS 1.2 2 Bytes

Length 1 2 Bytes

4 Content-Type Handshake (22) 1 Byte

Version TLS 1.2 2 Bytes

Length 70 2 Bytes

5 Content-Type Handshake (22) 1 Byte

Version TLS 1.2 2 Bytes

Length 122 2 Bytes

6 Opaque-Type Application Data (23) 1 Byte

Version TLS 1.2 2 Bytes

Length 4543 2 Bytes

7 Opaque-Type Application Data (23) 1 Byte

Version TLS 1.2 2 Bytes

Length 53 2 Bytes

13

8 Opaque-Type Application Data (23) 1 Byte

Version TLS 1.2 2 Bytes

Length 87 2 Bytes

9 Opaque-Type Application Data (23) 1 Byte

Version TLS 1.2 2 Bytes

Length 820 2 Bytes

10 Opaque-Type Application Data (23) 1 Byte

Version TLS 1.2 2 Bytes

Length 634 2 Bytes

4. Cipher Suites in ClientHello Record: Look at the first two and the last cipher suites offered by the client and compare them. What cipher suite does
the server select?

Looking at the cipher suites advertised by the client, the following are the first two and the last two cipher suites offered:

14

Reserved(GREASE) = Any proper implementation of TLS protocol, should also process these GREASE cipher suites which are basically a random collection
of a number of unknown cipher suites (not valid). In case of a new or unknown/unidentified cipher suites are advertised by either the client to an old server,
then such cipher suites are processed as GREASE suites or reserved suites and ignored so that the compatibility of that particular new suite remains doesn't
raise any compatibility issues at the server end and handshake fails.

15

TLS_AES_128_GCM_SHA256 = This cipher suite is used in TLS1.3 that uses Diffie-Hellman Key exchange protocol with AES128 symmetric cryptography
in GCM (Galois/Counter Mode) to encrypt the data and SHA256 to generate a digest and maintain the message integrity.

TLS_AES_256_GCM_SHA384 = This cipher suite is similar to the one above but it uses increased symmetric/session key length (increased from 128 to 256)
and also increased digest length (increased from 256 to 384). Apart from that, this cipher suite is also an example of a TLS1.3 cipher suite that uses DH key
exchange protocol to generate session key encrypt the data using AES in GCM mode followed SHA to maintain message integrity.

TLS_RSA_WITH_AES_128_CBC_SHA = This cipher suite is different from the ones discussed above because it uses a non-ephemeral key exchange protocol
to exchange session keys. This suite uses RSA key pairs to authenticate the server and client (endpoints) and also to exchange the agreed-upon session keys
between them. This suite also uses symmetric cryptography to encrypt data having a key length of 128 bits in Cipher Block Chaining Mode (CBC Mode).
Unlike the above cipher suites, it uses SHA 1 hashing algorithm to generate a digest of 160 bits length (20 bytes) that get signed to preserve the message
integrity.

TLS_RSA_WITH_AES_256_CBC_SHA = Only the key length for AES symmetric encryption has changed between the immediate previous cipher suite.

The cipher suite selected by the server is TLS_AES_128_GCM_SHA256 , as shown in the screenshot below:

16

5. What is the SNI value in ClientHello Record? What’s its purpose? In other words, why is the client advertising it to the server?

It is possible for a webserver to host multiple websites with different domains. Being different websites with different domains, each of them might
have different digital certificates that need to be sent when a client hello for that website is received from a client. Since all these websites are hosted
in the same webserver, each of them will be redirected to the same IP address (IP of the webserver) which is not enough to identify the website and
DC to be sent to the client. This problem occurs because in TLS, the handshake protocol requires verification of certificate of a specific website but
there is no indication of which website is being verified. The same problem is solved using SNI value or Server Name indication value which
indicates the website that the client is trying to access from a web server that is hosting multiple websites.

17

As we can see in the figure above, there is a clear indication of the website that the client is trying to access. Now, if even the webserver contains
multiple websites hosted, the server will know which website is trying to get accessed to and which digital certificate to send.

6. What is the ALPN value(s) in ClientHello Record? What’s its purpose? Which one did the server select?
Application Layer Protocol Negotiation extension in Client Hello record is used to negotiate (in priority order) which application layer protocol
(HTTP protocol) to use over a TLS connection. This is added in the Client Hello record itself as it can be used to prevent additional RTT to decide
which protocol to use later on. The figure below shows that the preferred protocol to use is HTTP/2 and HTTP/1.1 after that in that order.

Similarly, we can see from the figure below that the server selected HTTP/2 from the provided ALPN protocol list.

18

7. Does the ClientHello contain status_request, supported_versions, psk_key_exchange_modes extensions? If so, what do they convey to the server?

Yes the ClientHello contains status_request, supported_versions, psk_key_exchange_modes extensions.

Status request: The status request extension in the ClientHello message indicates the status of the certificate or the mechanism to check it like OCSP
or CRL.

Supported versions = This extension indicates which TLS versions are supported by the client browser to establish the secure connection.
psk_key_exchange_modes extensions = This extension indicates to the server which key exchange modes like RSA, (EC)DHE are supported with the

19

pre-shared key. This extension comes along with a pre-shared key extension which will further be used to generate the Handshake Secret based on the
mode indicated in the extension.

8. Does ClientHello Record contain the Signature_algorithms extension? What’s its purpose?

Yes, the ClientHello Record contains a signature algorithms extension that contains a number of signature algorithms (including the algorithms to
generate the digest and the one used to sign it) that can be used to sign a certificate or generate the digest or simply for digital signatures.

9. Does the client offer any Random number, key share, Supported Groups, and PSK in ClientHello Record? How will be these used by the Server?

The client random number shared by the client will be used to generate the master secret which in turn will be used to generate the key material. The
same random number or noonces will be used to prevent any sort of replay attacks.

20

The Key shares shared by the client will be used to generate the PMS during the Key exchange protocol following the key exchange protocol selected
by the server. If there are global parameters that can be used to generate the PMS, the client will advertise it along with key share to the server so that
it can be used to get the PMS. According to RFC 8446, key share contains the endpoint's cryptographic parameters.

The supported groups' extension in the client hello message indicates the name of the groups which the client supports for key exchange in
preferential order.

21

The client doesn't offer any out-of-bounds PSK to the server. PSK will be used by the server to generate the Early secret, handshake secret as well as
Master Secret using multiple additional parameters. The PSK can either be a session ticket corresponding to a previous conversation or any key that is
agreed between the communication parties prior to the communication by other agreement forms.

10. What TLS versions your browser/client is supporting? Which one did the server select?

As the screenshot indicates, the client/my browser is supporting TLS1.2, TLS1.3, and an unknown (for backward compatibility and extensibility).
The server selected TLS 1.2 for establishing a secure connection although it supported TLS1.3.

11. Look at Certificate Record from the server to the client: How many certificates did the server return and how are they related? Who is the issuer of the
Bank’s certificate? What type of public key the bank is using?

22

As we can see from the screenshot above, there are three certificates being sent from the server to the client. The subject’s name in each of these
certificates indicates the party for which the certificate is issued. The topmost certificate is the certificate of the website that is being accessed i.e.
netbanking.hdfcbank.com. The certificate below that is the certificate of the intermediate CA that has signed the certificate of the website is accessed
(HDFC Net Banking). Here, the intermediate CA is GeoTrust EV RSA CA 2018. Similarly, the final certificate is the certificate of the root CA that is
self-signed. Here, the root CA is Digicert High Assurance EV Root CA. So these certificates are in a chain of signed certificates.

Geo Trust EV RSA CA 2018 is the issuer of the bank’s certificate.

23

According to the screenshot above, the bank is using the RSA Public key of 2048 bits.

12. Comment on the key exchange algorithm agreed upon, what are the parameters that got exchanged between client and server to derive the session
keys.

24

Looking at server hello ECDHE (Elliptic Curve Diffie-Hellman Key Exchange) protocol is used to exchange keys between them. Similarly, the above
screenshot also shows the elliptic curve constraints to follow to generate the keys.

Similarly, there are EC Diffie-Hellman parameters also being sent from server to client indicating the groups, length of the key, and more so that the

25

client can use it to generate the session keys using these parameters.

13. Which certificate type (DV/OV/EV) the bank is using?

As we can see from the screenshot above, the certificate contains detailed information like business category, locality, the jurisdiction of incorporation
country name, states, and everything. To conduct and validate such information, the only validation method is to carry out Extended Validation (EV).
Any other certificate without EV won't contain named parameters like jurisdictions, business categories, and other detailed information.
Reference

26

https://en.wikipedia.org/w/index.php?title=Extended_Validation_Certificate&action=edit§ion=6

14. Which certificate type (single or multi-domain or wild-card) the bank is using?

The certificate contains multiple subject alternative names, SANs, without any asterisk (*) meaning the certificate is not a wild card certificate and
since it contains multiple SANs, the certificate must be a multi-domain certificate.

27

15. How can the client check whether the certificate is revoked or not: OCSP/CRL? Does the server support OCSP stapling?

The client can check the status of the certificate using the CRL distribution points or the OCSP status URL. According to the screenshot above, we
can see the links to the CRL distribution and OCSP server. The client can either index the CRL list or query the OCSP server to check the status of the
digital certificate of the server.

No, the server doesn't support OCSP stapling. Couldn't find the evidence for not supporting the OCSP stapling in the trace but the

28

16. How many log servers logged the certificate of the bank? What role does the log server play in the Web PKI ecosystem? Refer: SCT extension.

As we can see from the above screenshot, there are three unknown Logs that have logged the issuance of the certificate of the bank. The Certificate
Issuance logs are generated/recorded at multiple Logs over the internet when the CA issues the certificate. The purpose of such logs of the certificate
is to verify the authenticity of the received certificate. The client can verify the certificate received from the servers with the certificates logged in
multiple (three in our case) Logs so that we know whether the certificate is valid or not. The logs contain the timestamp of issuance, log ID, SCT
version for verification.

17. How is the application data being encrypted? Do the records containing application data include a separate MAC? Does Wireshark distinguish
between the encrypted application data and the MAC?

Application data is encrypted using the key material derived using the Master Secret which is in inturn from PMS using Diffie-Hellman Key
Exchange Protocol in an ephemeral fashion. (ECDHE was the agreed-upon key exchange protocol in the handshake protocol). As we saw earlier, the
agreed-upon version for the TLS was TLS 1.3 which generates the encrypted data along with the MAC in a single process unlike in TLS 1.2 where
the generation of MAC, using keys, and encryption of data was a different process (one after another). Here in TLS1.3, we have AEAD for encryption
of the application data so it doesn't differentiate the encrypted application data with a separate MAC. So, the records containing the encrypted data
don’t contain a separate MAC.

29

No, Wireshark doesn't differentiate between the encrypted application data and the MAC.s

18. Look at various keys logged in the file pointed to by the SSLKEYLOGFILE environment variable in your host OS and describe their usage. Also,
comment on how they are derived from nonces and other parameters using HKDF. Which entity in your system does this job on the fly?

There are multiple keys logged in the SSLKEYLOGFILE, as shown below:

a. CLIENT_EARLY_TRAFFIC_SECRET: This key is used to encrypt the data even before the handshake protocol has finished negotiating any
keys. This key is used in the 0-RTT protocol to send HTTP/ or any application data over to the server before the completion of the handshake
protocol and any fixed keys/key materials are generated. So, This secret is used to derive the early traffic secret key that is used to send
application data without waiting for the server to negotiate the session keys.

b. CLIENT_RANDOM: This value is used as an input to PRF along with the MS to generate the key materials in (EC)DHE key exchange
protocols. The ephemeral nature of this value prevents any sort of replay attacks.

c. CLIENT_HANDSHAKE_TRAFFIC_SECRET: This secret is used to derive the handshake traffic secret key that is used to encrypt the
handshake messages that are being sent to the server.

d. SERVER_HANDSHAKE_TRAFFIC_SECRET: This secret is used to derive keys that are used to encrypt the handshake messages that are
being sent from the server to the client.

e. EXPORTER_SECRET: This secret is used to derive a key that is used by the application layer to encrypt data in the application layer itself
for more security.

f. CLIENT_TRAFFIC_SECRET_0: This secret is used to derive the key that the client uses to encrypt the application data sent from client to
server.

g. SERVER_TRAFFIC_SECRET_0: This secret is used to derive the key that the server uses to encrypt the application data sent from server to
client.

There are multiple steps in generating the actual keys in TLS 1.3. Initially with a pre-shared key; PSK, out of bound key, or a key that was shared
earlier is used along with the SALT to generate the Early secret (of fixed length) using the HKDF-Extract Function.
This early secret is used with label and message for the function Derive Secret to generate different secrets like binder keys, early traffic secrets,

30

exported master secrets.
Now, this early secret is passed to the function Derive Secret with a “derived” message along with the parameters of EC-DHE to generate the
Handshake Secret using the function HKDF-Extract. This handshake secret is passed with the derive secret function to generate multiple secrets like
client handshake traffic secret or server handshake traffic secret.

So, Derive secret function here is internally calling the HKDF-Expand Label which is internally calling the HKDF-Expand Function to generate the
specified keys. Now such keys can be used to encrypt various types of data.

The browser or the client entity on the communication along with the server both calculate the key materials using TLS1.3. Key scheduling. In the
client-side, the browser querying the website does all of these operations.

19. Do you see any support for session resumption in the trace? What do you find inside the session ticket, if it is used? Is it based on Session ID/Session
ticket or PSK-based Session ticket? What role do the session IDs play in TLS 1.3?

Yes, In the client hello message, the client is providing session ID to resume the earlier sessions as shown in the figure below.

To that particular Client Hello, the server is responding with a completely different session ID which indicates that the server is opting for a full
handshake rather than session resumption as shown in the figure below:

31

This indicates that the session ID sent by the client is no longer valid to resume the earlier session.
Apart from the session ID, there are no packets indicating the availability or exchange of session tickets for session resumptions. The session
resumptions in TLS1.3 are based on session tickets that are generated using the PSK or generated using resumption master secret. These tickets have
their own lifetime hint indicating the availability of session tickets for usage. So in TLS1.3 session IDs are not used to resume the session, in fact IDs
are not used at all.

20. How long does it take for TLS to establish a secure pipe? How much of it could be reduced when session resumption is used?
Since the client and server are using TLS1.2 to establish a secure pipe, TLS1.2 will take 2 RTTs to establish the connection and starts with
HTTP/application layer encrypted requests. Also, the client can send multiple Client Hello Messages to ensure that the connection initiation has
successfully reached the server. When Session resumption is used in TLS1.2 the RTT is reduced to 1 RTT before HTTP requests can be sent.
Similarly in TLS1.3, we can have 0 RTT with session resumption meaning we can send HTTP requests along with the Client Hello messages.

Now looking at the trace, the time taken from client hello to receiving a finished message from the server, the total time taken was 0.02759 seconds

32

which is equivalent to 2 RTTs time, so the use of session resumption in TLS1.2 could reduce the handshake time to 0.02759/2 = 0.013579 seconds.

21. What is the duration of the HTTPS session, how many IP packets are exchanged in the browsing session (starting from the first TCP SYN packet till
TCP FIN packet)?

To calculate the duration of the HTTPS session, we have to subtract the time difference between the initial [SYN] packet received to the [FIN, ACK]
packet received in the trace. But unfortunately, the trace did not contain the [FIN, ACK] packet and only contained the [SYN] packet which must be
because I stopped capturing the packets before I close the website for the banking website. Since no close website request was sent to the server while
the packet capture was still on, the [FIN] packets were not captured.

Also, the total number of IP packets captured was 266 which is the total number of packets captured during the browsing session, excluding the
packets that correspond to TCP FIN. Since the browsing session was only for the banking website, all the packets captured were for the same, so the
entire captured packets count is the total number of IP packets captured.

22. How many TLS connections are established?

Looking at the captured trace and counting the Change Cipher Spec, Finished message from server to client, a total of 5 TLS connections seemed to
be established.

23. How many HTTP request/response packets are exchanged in the browsing session? Identify the packet(s) that carried the response that included the
Netbanking LOG-IN page of the bank. Do these response messages carry any security-related directives like XSS, same-origin, HSTS?

A total of 6 HTTP request/response packets are exchanged in the browsing session.

Yes, the response messages carry some security-related directives like XSS protection, x-frame-options: SAME ORIGIN as shown in the figure
below:

33

24. Identify the HTTP packet(s) that carried LOG-IN credentials supplied by you. Look at the raw bytes displayed in the Wireshark GUI and identify
strings that carried your LOG-IN credentials. Are you able to find both user id and password in the raw packet capture?

a. It’s important that you only keyed in some arbitrary user id and password as part of this assignment for more safety!

34

As you can see in the screenshot above, I can clearly identify the username I supplied in the login form as well as the password that seems to be
hashed with some derivative function. There were two login forms (one additional with captcha) so there are two requests in the trace as shown
above.

25. Generate an SSL report of the bank using SSL Server Test (Powered by Qualys SSL Labs) and summarize what security features are implemented by
the bank’s web server for improved online banking by its customers. Does the report flag any issues with the security of the bank?

35

https://www.ssllabs.com/ssltest/index.html

The signature algorithm that is being used is SHA256withRSA with 2048 bits for RSA. The server is not providing OCSP Staple with Server Hello
which means the revocation status check is a little cumbersome. The bank has a properly signed certificate, that is signed by the intermediate CA. The
server is only preferring TLS1.2 to establish a secure communication which brings a series of problems with itself, first and foremost being the weak
cryptographic encryption algorithms along with no perfect forward secrecy as CBC mode is still being used to encrypt the messages and RSA is still
being used to authenticate the server.

The server is also allowing secure client-initiated renegotiation. Any sorts of POODLE attacks, Heartbleed, ticket bleed, ROBOT are prevented.

Yes, the issue of no perfect forward secrecy is flagged along with the issue of the use of TLS1.2 cipher suites that involves CBC mode encryption.
That is why the site is receiving only B grades.

26. Comment on and explain anything else that you found interesting in the trace.

Along with the handshake messages and the application data, there were a number of settings and update messages being exchanged between the
communicating parties which contained encrypted application data. The exchange of settings and updates even after the completion of the handshake
protocol was interesting. The selection of connection preface using MAGIC: PRI indicates the HTTP protocol to be used to query information from
the server, was interesting.

36

A total of 5 TLS connections seemed to be established, which might potentially be because of other browsing sessions even though there were no
other forms of browsing at the time of packet capture. So, 5 TLS connections were surprising and interesting,

Similarly, the use of TLS1.2 even though both the client and server support TLS1.3 just because the middleboxes don't seem pretty interesting to me
because of the vast difficulty of implementations can be clearly seen.

PLAGIARISM STATEMENT

I certify that this assignment/report is my own work, based on my personal study and/or research and that I have acknowledged all material and sources used
in its preparation, whether they be books, articles, reports, lecture notes, and any other kind of document, electronic or personal communication. I also certify
that this assignment/report has not previously been submitted for assessment in any other course, except where specific permission has been granted from all
course instructors involved, or at any other time in this course, and that I have not copied in part or whole or otherwise plagiarised the work of other students
and/or persons. I pledge to uphold the principles of honesty and responsibility at CSE@IITH. In addition, I understand my responsibility to report honor
violations by other students if I become aware of them.

Name: Kamal Shrestha
Date: Feb 27, 2022
Signature: K.S.

37

