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Introduction ~ =~~~ ===

e |tis common to have images taken in low-light conditions due to environmental conditions
or technical issue.

e (Good quality images or videos are crucial for surveillance, autonomous driving, etc.

e Zero-reference deep curve estimation (Zero-DCE) is an effective low-light image
enhancement technique.

e Zero-DCE++ is an accelerated and lightweight but equally effective version of original
Zero-DCE.




Introduction(contd.) ===

e On top of Zero-DCE++, we have used attention to improve the quality of enhanced images.
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Baseline e

e Zero-DCE
o It doesn’t required paired images for training.
o Reformulates the task as an image-specific curve estimation problem.
o Uses carefully curated non-reference loss functions.

o The final loss function combines exposure control loss, spatial consistency loss,
illumination smoothness loss, and color constancy loss.

o It takes a low-light image as input and produces high-order curves as its output.




Baseline(contd.) .

e Zero-DCE framework
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Baseline(contd.) e

e DCE-Net
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Baseline(contd.) .

e Zero-DCE++

O

Zero-DCE++ have 8 times less parameters than original Zero-DCE.
Uses more efficient depthwise separable convolutions.
Estimated curve parameters are 3 (in original Zero-DCE, it was 24).

It uses downsampled input images and up samples after enhancement.




Proposed Approach e

e Zero-DCE++ with Attention
o Attention has brought significant advancement in NLP domain in past 5-7 years.

o In Computer Vision also people have tried to use different type of attentions(special,
temporal, self etc.)[SAGAN,SCA-CNN].

o Convolutional Block Attention Module(CBAM)[5] combines channel and special attention
together.

o We have applied CBAM module over each convolution layer of DCE-Net.




Proposed Approach(contd.) s,
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Proposed Approach(contd.)
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e Zero-DCE++ with CBAM
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Results & Analysis
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Quantitative Analysis

Image quality assessment matrices

O

PSNR, SSIM, and MAE metrics are
used to quantitatively compare the
performance of different methods.

Model | PSNR? | SSIM? | MAE]
Zero-DCE++ (baseline) 1152 0.062 66.19
CoAM (i‘\r)“ 6layers | 1320 | 0062 | 55.19
CBAM(A) with bias and 11.98 0.062 63.19

no batch_norm (B)
CBAM(E) il 1345 | 0062 | 42.88
pooling types
CBAM in all 7 layers
with bias and no 9.10 0.062 87.39
batch_norm (C)
CBAM(C) with reduced i i
2 2.02
reduction_rate (D) 8.66 0.062 9292
CBAM(D) with .
wd=000lmdt=000i | 2°0¢ | 083 | 1224
CBAM(DYI first 4 1038 | 0055 | 75.42
layers
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Results & Analysis(contd.)
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e Quantitative Analysis(contd.)

e Training loss comparison

O

We can see with addition of
attention, decrease in loss in

more which suggests better
learning.

Smoothed Value
y 6418 0416

0.9418
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Results & Analysis(contd.) e

e Quantitative Analysis(contd.)

e Testing time comparison

o As addition of CBAM, introduces 3 5e-3
more parameters, inference time
increases.
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Results & Analysis(contd.) e

Original

e Qualitative Analysis -

With attention, no Batchnorm and bias in Conv layers

Baseline(Zero-DCE) With attention in first 6 layers

With all 4 types of pooling in CBAM

With reduced reduction_rate in attention Using Ir = 0.001 and weight_decay = 0.001 with attention

With attention in all layers
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Results & Analysis(contd.) e

e Qualitative Analysis(contd)

Original

Baseline (Zero-DCE++) Attention with reduced reduction_rate

Attention with Ir=0.001 and wd=0.001
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Results & Analysis(contd.

e Qualitative Analysis(contd.)
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Ablation Study s

o Effect of different number of attention layers

Using attantion only in first 4 layers With attention in all layers
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Ablation Study(contd.) .

e Effect of applying Batch norm and bias in CBAM
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Ablation Study(contd.) .

o Effect of reduction rate of CBAM
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Ablation Study(contd.) .

o Effect of different types of pooling in CBAM
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Drawbacks =~ ===

e Increase in training time

o We have observed a 6 times increase in training time wrt baseline when we added CBAM
on it.

o With batch norm, the increase in training time is negligible but it also affects the output
quality.

o We haven’t observed much difference in inference time wrt baseline.

e Discrepancies between qualitative and quantitative results

o More the PSNR and SSIM is better the output image and similarly less the MAE is
better for output.

o We don’t think these matrices correctly asses the enhancement.
o our best model has lower PSNR(8.66 vs 11.52) and higher MAE(92.03 vs 66.19) than
Zero-DCE++ but the output images look better to the human eye.
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Drawbacks(contd.) ===

e Saturation in enhanced images

o We have observed that at times, our model reduces the natural colors or saturates the
enhanced image.

o This is particularly visible for images having light texture.
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Conclusion

e In this work, we have considered Zero-DCE++ as baseline and applied CBAM on top of
that.

e Results show that the attention module improves the quality of enhanced images.
e \We have done detailed ablation study and decided the hyper-parameters accordingly.
e \We have tested the application of our model for video and real-time video enhancement.

e Improvements are still required in terms of visual quality, noise correction, inference time,
training time, etc.
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Activity Tamal Kamal Aman Praveen Jayamohan.
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Literature Review 4 v v 4 4
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£0



References s e

[1] Partha Pratim Banik, Rappy Saha, and Ki-Doo Kim. Contrast enhancement of low-light image using
histogram equalization and illumination adjustment. In 2018 International Conference on Electronics,
Information, and Communication (ICEIC), pages 1-4, 2018. 2

[2] Zilong Chen, Yaling Liang, and Minghui Du. Attention based broadly self-guided network for low light image
enhancement, 2021. 3

[3] Chi-Mao Fan, Tsung-Jung Liu, and Kuan-Hsien Liu. Half wavelet attention on m-net+ for low-light image
enhancement, 2022. 3

[4]Chunle Guo, Chongyi Li, Jichang Guo, Chen Change Loy,Junhui Hou, Sam Kwong, and Runmin Cong.
Zero-reference deep curve estimation for low-light image enhancement. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2020. 1

[6] Xiaojie Guo, Yu Li, and Haibin Ling. Lime: Low-light image enhancement via illumination map estimation.
IEEE Transactions on Image Processing, 26(2):982-993, 2017. 3

26



Thank You!
®
]|

W stenfidhr Svem Beware
Indian Institute of Technology Hyderabad

27



