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Abstract

It is common to have images taken in low-light con-
ditions due to environmental conditions like the extreme
backlight or technical issues like camera sensing capacity.
These images suffer from poor visibility, and on the other
side, it does not convey complete information. Good quality
images or videos are crucial for surveillance, autonomous
driving, etc. Many image enhancement techniques have
been developed using different approaches ranging from
histogram equalization methods to machine learning meth-
ods. As a partial fulfillment for Deep Learning, AI5100, we
took up a low-light image enhancement task using a deep
learning-based method called Zero-Reference Deep Curve
Estimation(Zero-DCE). The idea is to use carefully formu-
lated non-reference loss functions to convert the light en-
hancement as an image-specific curve estimation task. The
model is also lightweight, requiring limited computational
resources for training and inference time, making it suit-
able for real-world applications. This project presents a
proposed Convolution Block Attention Module (CBAM) ap-
proach over Zero-DCE Architecture with channel and spa-
tial gate attention to generate better-enhanced images. It
achieved a training loss of 0.7198 with an improvement
from Zero-DCE with a training loss of 0.9639 over 10
epochs. With the expense of a significant increase in infer-
ence time, the proposed model was able to generate better-
enhanced images under different low-light conditions.

1. Introduction

As already mentioned, having well-illuminated im-
ages are critical for various real-world image or video
processing applications. Nowadays, with more and more
cameras(particularly in smartphones), image samples are
obtained under different lighting conditions such as night,
extreme back-light, etc. The images captured under low
light conditions often come as noisy, under-exposed, color
distorted forms. These issues are particularly evident in

phone cameras, where the sensors are less sensitive in
low light conditions. The quality of the image captured
by the camera depends on the sensor’s properties such
as aperture, exposure, shutter speed, etc. Some high-end
cameras contain extra hardware for noise correction and
illumination, but then it becomes costlier as more hardware
gets included in the camera sensor suite.

By adjusting camera settings, the quality of the image
can be enhanced to some extent. But, in a highly dark
environment, generated images are often noisy. There
are other issues also like when the exposure is long, it
introduces blur, and on the other hand, if the exposure
is short, that introduces noise. Typically, in low-light
images, the signal-to-noise ratio(SNR) and photon count
are low, which makes it a challenging problem. Increasing
the ISO can be one way to increase the brightness, but
that doesn’t solve the problem, as it also increases noise.
There can be other physical ways to increase SNR like
increasing exposure time, using additional lights(ex. flash
of mobile), etc. Still, these are not always feasible and
have their own issues, like using flash can introduce more
light than needed. So there is a real need for low-light
image enhancement software so that we don’t need to buy
or carry good quality cameras if not necessary, and systems
like autonomous cars, satellites, surveillance systems, etc.,
don’t need to deploy additional hardware.

For this work, we have considered Zero-Reference
Deep Curve Estimation(Zero-DCE) [5] as our baseline
for the low-light image enhancement task. Interestingly,
Zero-DCE doesn’t need any paired or unpaired images
during training, unlike CNN based [20, 24] or GAN
based [8, 28] approaches, which helps to avoid over-fitting.
This is possible because the loss function doesn’t contain
ground truth references. Zero-DCE models the image
enhancement task as an image-specific curve estimation
problem. The loss function combines exposure control
loss, spatial consistency loss, illumination smoothness loss,
and color constancy loss. The model takes a low-light
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image as input and produces higher-order curves applied
for pixel-wise adjustment to obtain an enhanced image.
Additionally, the Zero-DCE model is lightweight (having
only seven convolution layers) and has around 80k train-
able parameters, which is relatively less for deep learning
models. Due to this, Zero-DCE model training takes only
30 mins in an Nvidia 2080Ti GPU. During inference for
32 images of size 1200 × 900 × 3, Zero-DCE takes 2.5
msec to process, which is way better with respect to its
peers, and it makes Zero-DCE model suitable for real-time
applications. We’ll be looking at the baseline of Zero-DCE,
its drawbacks compared to some of the more recent works
and try to improve upon the existing model.

2. Literature Review

Illumination enhancement [13] has been one of the
commonly known problems for a long time in the image
processing domain. There have been many attempts to
improve the quality of low-light images. A variety of tech-
niques have been developed, starting from histogram-based
methods to current deep learning-based approaches.

An experiment-based review of Low-Light Image En-
hancement methods was carried out in 2020 [22]. It
attempted to categorize various enhancement techniques
based on the approaches. The methods are as follows:

• Gray transformation methods: These methods trans-
form the gray values of single pixels into other gray
values through a mathematical function.

• Histogram equalization methods: These methods
use the cumulative distribution function (CDF) to ad-
just the gray output levels.

• Retinex methods - These methods are based on the
illumination-reflection model; an image can be ex-
pressed as the product of a reflection component and
an illumination component.

• Frequency-domain methods - These methods are
based on frequency domain. It transforms an image
into the frequency domain, performs an operation, and
converts it back to the spatial domain.

• Image fusion methods - These methods take multiple
images from the same source or multiple sources and
fuse them to obtain an enhanced image.

• Defogging model methods - These methods are based
on improving foggy images. It negates the image first
and assumes it as a foggy image, and tries to remove
such effects from the image.

• Machine learning methods - These methods use var-
ious types of machine learning techniques to solve the
low-light image enhancement task.

Not only these, due to the recent advancements in the
area of deep learning, many low light image enhancement
algorithms have been developed that introduce a variety of
techniques using different learning strategies ranging from
supervised to adversarial leanings [11].

The initial attempts to generate an image to image
mappings were using histogram equalization(HE) [1]. This
method compared and tried to maintain the mean brightness
of the original image inside an adjusted image, adjusted in
terms of saturation, details(sharpness), and more.

To make the method more dynamic and usable in consumer
electronics, we have [7], which focuses on maintaining the
intensity of the original image with the resulting image by
smoothing the intensity histograms using Gaussian filters
followed by partitioning and assigning them into a dynamic
range. Each range was then equalized and normalized
individually using the histogram equalization process to
maintain the mean intensity.

Following the above methods, we now have a differ-
ent approach to tackle the low light image enhancement
task. Retinex [10], and Retinex-Net [24] treat the en-
hancement of image as an adversarial learning task, where
each image is factored into the product combination of
reflectance and illumination. Each illumination component
was used to formulate and learn an image-specific illumina-
tion map used to enhance consistent reflectance parameters
between each pair of images.

However, the naturalness of non-uniform illumination
images cannot be fully preserved since methods described
in [10, 24] do not limit the range of reflectance and do not
exclude illumination as the default choice. As in Retinex,
a recommended bright-pass filter splits the image into
reflectance and illumination. A novel bi-log transformation
was implemented to map the illumination to establish a
balance between details and naturalness of the image,
where the realistic nature was measured using a novel
lightness-order metric.

In continuation to the above methods, [4] proposed a
weighted variational approach to estimate the reflectance
and illumination from the input image.

Instead of getting the illumination map from the ob-
served image, the natural illumination was calculated using
the maximum intensity of each pixel in the previously
enhanced RGB channel using the image structure. The
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maximum values for the R, G, and B channels were used to
estimate the illumination of each pixel. Structural priorities
were imposed to obtain the final lighting map [6].

In [21], an optimization problem-based technique was
employed to estimate the lighting map using noise. Instead
of utilizing a logarithmic transformation, this method
analyses structural information in low-light photographs
to forecast the noise map, which is then solved using a
Lagrange multiplier based alternating direction minimiza-
tion algorithm. Previous methods unintendedly affected
the image histogram distribution or relied on potentially
incorrect physical models.

With the advancement of deep learning techniques, at-
tempts were carried out in low-light imaging areas. In [11],
a survey of deep learning-based approaches was carried out.

Convolution Neural Networks (CNN)s based Methods
use paired images (low/normal conditions) or Paired
Supervision. One of the drawbacks of learning-based
approaches for the generation of training data. It is often a
tedious and expensive task to obtain normal light and low
light image pairs. There were attempts in the zero-shot
learning strategy, where paired images are not required for
training.

In [20], Instead of carrying out an image to image
mapping, a mapping between the image to illumination
was done, and the final output is generated from the learned
illumination map. Here, the model learns with the use
of intermediate lighting to achieve improved results with
the supervision of complex photo adjustments retouched
input/output image pairs.

We also have the generative adversarial approaches to
enhance low light images using unpaired images. Pho-
tographing in low and normal light simultaneously is
becoming increasingly difficult. [8] describes an unsuper-
vised generative adversarial network(GAN) that can be
trained without low light image pairs by learning to regu-
larise unpaired training data using information extracted
from the input, which includes a global-local discriminator
structure, a self-regularized perceptual loss function, and
the attention mechanism.

Similarly, LLNet [14] is a deep autoencoder-based ap-
proach. It identifies signal features from low-light images
and adaptively brightens images without over-amplifying
the lighter parts in images (i.e., without saturation of image
pixels) in a high dynamic range.

Some of the more recent works include the use of a

normalizing flow model. [23] focused on considering the
complex conditional distribution of normally exposed
images by training an invertible network to map the
conditional distributions into Gaussian distributions. The
model showed significant results in the LOL dataset [24]
and is currently the best model for that dataset according to
the average PSNR and SSIM metrics.

A paper focusing on optimizing the computational
speed of the low-light enhancement of images was given
by [9]. It preprocesses the images in higher scale-spaces
and simultaneously enables processing in all scale-spaces.
It also provides an ”off-the-shelf” amplification module
for pre-amplifying images requiring almost no fine-tuning.
These optimizations give the result much faster while still
being comparable to the other models in terms of metrics.

HWMNet [3] is an M-Net [16] based CNN-model
that utilizes the hierarchical structure of the M-Net+
model (used for medical purposes) and adds a half-wavelet
attention block to get enriched image features. It also gives
a competitive state-of-the-art performance in the LOL [24]
dataset.

Multi-Axis MLP for Image Processing (MAXIM) [18]
provides a spatially-gated multi-layer perceptron (MLP)
model for various image processing tasks and manages
to achieve state-of-the-art performance in a lot of them,
including deblurring and low-light image enhancement. It
primarily has two building blocks that take care of spatial
mixing of global and local visual spaces and cross-feature
mutual conditioning, respectively, to enhance low-light
images.

A multi-branch CNN guided by attention blocks was
employed in [15], in order to perform brightness en-
hancement and denoising with their respective attention
maps. They also synthesise a diverse dataset from publicly
available datasets which helps with the model adaptation.

ABSGN [2] for low-light enhancement utilises a self
guided network combined with global as well as channel
attention blocks in a top-down approach in order to enhance
the images. To exploit information extracted at multiple
scales (resolutions), wavelet transformation is used to
convert the feature maps. At the lower resolutions, it uses
a Global Spatial Attention block to learn the global context
and colour information, whereas in the higher resolutions it
uses channel attention blocks to learn the attention weights
for different channels. The paper claims to get better
evaluation metrics in the LOL dataset than the previously
mentioned results with a relatively low inference time.

Another highly effective image enhancement method
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Figure 1. DCE-Net Architecture

that has been introduced recently is MIRnet [26]. What
makes this technique so special is the multi scale approach
in which only the unwanted degraded details from the im-
age are discarded and at the same time useful spatial details
are preserved. This model maintains the high resolution
details hence preserving the spatial details to the maximum
possible extent and simultaneously process lower spatial
resolutions using parallel convolution streams. The key
difference between MIRnet and other existing multi scale
methods is that other methods process individual scales
separately and in an isolated manner but MIRnet shares
information across all scales and that too for all resolution
levels.

Finally, we have Zero-Reference Deep Curve Estima-
tion (Zero-DCE), which focuses on the image specific
curve estimation to produce higher order curves from low
light input images. Zero reference means that it doesn’t
require any paired or unpaired images of low light and
adequate light images for the training process, like in CNN
and GAN-based methods. Instead, this method works
based on four loss functions that do not require any ground
truth reference for training and efficiently measure the en-
hancement quality of the image. So, despite the lightweight
nature of the model, the estimated image-specific curve
generalizes well to diverse conditions and makes dynamic
adjustments to low light input images.

Later, a faster and lighter version of Zero-DCE was
also released, called as Zero-DCE++ [12] which had eight
times lesser the number of parameters than its predecessor,
translating to twice the run time speedup. It had significant
improvements in training time as well without compromis-
ing much on the quality of enhanced images, thus proving
effective for resource-limited devices.

3. Methodology
3.1. Zero-DCE

Zero-DCE is a method to enhance low light images into
recognizable well illuminated ones using deep curve esti-
mation specific to the input image. Zero-DCE method does
not carry out image to image mapping and it does not re-
quire any labeled or unlabeled data to train with. Hence
this method is called zero reference. Zero-DCE frame-
work solves the image enhancement problem by estimat-
ing best fitting light enhancement curve from the input im-
age. Light enhancement curves are estimated using simple
7 layer CNN, DCE-Net. All pixels in the input image is
mapped to output image by repeatedly applying light image
enhancement(LE) curves. LE curves are similar to curves
available in image editing softwares. By changing the shape
of the curve, intensity of pixel will be changed. LE curve’s
shape is controlled by weight parameter and it is estimated
by CNN. Pixel wise LE curve parameter is estimated us-
ing DCE-Net. LE Curve map is calculated for each color
channel of the input image and it is repeatedly applied to
input image to get the enhanced output image. Light en-
hancement curves are estimated with the help of carefully
designed loss functions. The LE curve estimation equation
is as follows:

LE(I(x);α) = I(x) + αI(x)(1− I(x))

I(x) is the input image pixel intensity, α is the learn-able
parameter of the LE curve. Value of α ranges from -1 to 1.

In Zero DCE, higher order curves are used to create
more clear output images. Higher order curves are obtained
by repeatedly applying the curves. The higher order curves
are given by the equation.
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The only driving force that moves this method toward
correctness is a set of non reference loss functions . The
model iterates over finding best fitting light enhancement
curves and the aim of this iteration is to minimize the loss
functions described below:

1. Spatial Consistency Loss: Spatial consistency
refers to the contrast between adjacent pixels. This con-
trast is preserved by the curves being monotonous and
the intensity of the resultant pixels is normalized to fall
between [0,1]. The spatial consistency loss is defined by
this equation:

where K = number of local regions, Y = average
intensity value of the local region in the output, I = average
intensity value of the local region in the input. Ω(i) =
neighbouring regions of region denoted by i.

2. Color Constancy Loss: This loss is based on the the-
ory that the average value off all pixels over all channels
corresponds to grey and is used to rectify the color devia-
tion in the input and the output. The color constancy loss is
given by the following equation :

where Jp = average intensity of p channels in output,
(p,q) = pair of channels.

3. Exposure Control Loss : This loss deals with the
issue of over exposure or under exposure. We calculate the
difference between the average value of local area and the
value which we find to be well lit pixel value.The exposure
control loss is given by the following equation :

where M = number of regions, Y = average intensity
value of a local region in output, E = The well exposed
intensity value.

4. Illumination Smoothness Loss : This loss ensures
that the transition between adjacent pixels is smooth and
not abrupt.

where N = number of iterations, x = horizontal gradient,
y = vertical gradient. The total loss is the sum of the above
mentioned losses.

3.2. Zero-DCE++

Zero DCE ++ is a light weight version of zero-DCE,
which works as efficiently but with very small number of
hyperparameters ( around 10K) and much less training time.

This version has eight times lesser hyper-parameters
as compared to its other version that means the running
time is almost half without compromising the quality of the
results. According to the results mentioned in the paper, the
inference speed of zero-DCE++ is very high(1000/11 FPS)
on single CPU for image size upto 1200*900*3, whereas
baseline DCE could only provide 500 FPS. On a i9 core
3.5 GHz CPU, DCE ++ could process an image of size
1200*900*3 within 1s whereas baseline DCE takes about
10s The FLOPS required by DCE for an image of same size
were 84.99G while that of DCE++ were0.115G In some of
the experiments we have done in our project, DCE++ has
proven to be even better than the normal zero-DCE model.

3.3. Attention in Computer Vision

While looking into the possibilities for further im-
provement in the enhancement of images from current
implementation baseline, one idea was tried which is to
add attention module on top of the Zero-DCE++ model.
In recent times, attention mechanisms are widely used
especially in NLP domain. Attention is a method that
tries to enhance the important parts while fading out the
non-relevant information. It works similar to how human
brain processes data. While processing images, human
brain focuses on the specific parts and processes parts in a
different priority.

Attention mechanisms were introduced into computer
vision to mimic this aspect of the human visual system.
So, attention mechanism can be considered as a dynamic
weight adjustment process based on features of the input
image.

Inspired by the multi-headed self attention mechanism
from [19] for the NLP domain, the attention mechanism
for computer vision domain was first proposed in the
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paper Self Attention Generative Adversarial Networks
(SAGAN), [27] that incorporated long range dependency
capture for modelling image generation tasks.

There are two popular attention methods, which are
used for computer vision tasks:

1. Multi-Head Attention: divides the features into heads
and allows each attention module to focus only on a set
of features. This gives greater power to encode multi-
ple relationships and sub parts of images.

2. Convolutional Block Attention Module (CBAM)
[25]: emphasizes meaningful features along the chan-
nel and spatial axes. The spatial attention module helps
the model give more weight to the subject in each
channel layer, whereas the channel attention module
will help to identify important channels. The combi-
nation of both of these gives us a CBAM module as
shown in Figure 2.

Figure 2. Layout of the CBAM Module

The attention mechanism used for the low-light image
enhancement task is expected to improve the performance
of the model especially, when there is a clear subject in the
photograph. The proposed changes and corresponding re-
sults are mentioned in section 5.

4. Experimental Setup
4.1. Zero-DCE++

For the experimentation setup, Zero-DCE++ is taken as
the baseline for low-light image enhancement task. The
Zero-DCE++1 model was trained and tested the available
dataset2 to generate the following results.

As we can see in the above figures, 4 is clearly enhanced
compared to 3. The baseline model was trained using 2,
P100 GPU and tested using an Intel Xeon CPU having 2.20
GHz clock speed.

4.2. Video Enhancement using Zero-DCE++

As we have already mentioned, Zero-DCE is lightweight
and it’s inference time is quite less, so we want to ex-
plore the quality and the processing time needed when it’s

1https://github.com/Tamal- Mondal/Low_Light_
Image_Enhancement_2

2https://tinyurl.com/3edempds

Figure 3. Low-light input image

Figure 4. Enhanced output image using Zero-DCE++

used for video enhancement. Here, Zero-DCE++ was used,
which is an accelerated and even lighter version of Zero-
DCE.

For this experiment, a low-light video was taken as
input and every frame of it was enhanced by passing those
through the Zero-DCE++ model and finally the frames
were combined to get the enhanced video. The experiment
is being performed in an Intel Xeon CPU having 2.20
GHz clock speed. The code3, one original video4 and
corresponding enhanced video5 are present in the following
locations.

4.3. Real-Time Video Enhancement

Next attempt was to carry out video enhancement on
real-time streams from camera. Live laptop web camera
feed is used as input and trained Zero-DCE model is used
for generating the enhanced frames. After training the
model, the model will get stored in the snapshot folder.
Real-time video enhancement module captures the real-
time video frames from laptop camera, runs Zero-DCE en-
hancement on the frames of captured video and displays en-
hanced video along with the original video. Here are the

3https://tinyurl.com/4axm9m3e
4https://tinyurl.com/2p9xrhmp
5https://tinyurl.com/3dczyb7j
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screenshots of the original video and enhanced video.

Figure 5. Real-time video enhancement(left-original video , right-
enhanced video)

The code6, one original baseline real-time video7 and
corresponding enhanced video8 are present in the follow-
ing locations.
This module was tested on AMD machine with clock speed
of 2.60 GHz and no GPUs used. System was able to pro-
duce output in speed of 10FPS. Zero-DCE++ model with
100 epoch model is used to enhance the real time video.

5. Proposed approach: Zero-DCE++ with
CBAM Attention

This section describes the details of various improve-
ments that were attempted over Zero-DCE++. Attempts
were to improve the visual quality of the enhanced im-
age without increasing the inference time, as this model is
meant to be used in the real-time applications. We tried
to incorporate simple approaches without complicating the
model’s internal structure. Attention on existing model is
one of the approach, that we tried. Various models were
trained by changing various hyper parameters of the model.
Detailed descriptions of those attempted steps are described
below.

We have chosen to experiment with Convolutional
Block Attention Module(CBAM) [25] that combines both
channel and spatial attention. Standard implementation
of CBAM [17] is used for our experiment and have used
both channel and spatial attention together to improve the
enhanced images as suggested by the authors in the original
CBAM paper. This CBAM attention module is added over
each convolution layer’s activation maps to generate each
corresponding feature maps, that focuses on relevant and
dependent pixels (area of focus) of the image over all the
channels for the low-light image enhancement task.

The figure 6 shows the architecture of the model after
combining Zero-DCE++ with CBAM. One CBAM layer
was added on top of each of the 7 layers of original

6https://tinyurl.com/2p8fzd47
7https://tinyurl.com/2p8zzptw
8https://tinyurl.com/59x7mc39

Model PSNR↑ SSIM↑ MAE↓
Zero-DCE++ (baseline) 11.52 0.062 66.19
CBAM in first 6 layers

(A) 13.22 0.062 55.19

CBAM(A) with bias and
no batch norm (B) 11.98 0.062 63.19

CBAM(B) with 4
pooling types 13.45 0.062 42.88

CBAM in all 7 layers
with bias and no
batch norm (C)

9.10 0.062 87.39

CBAM(C) with reduced
reduction rate (D) 8.66 0.062 92.02

CBAM(D) with
wd=0.001 and lr=0.001 6.04 0.055 122.54

CBAM(D) in first 4
layers 10.38 0.055 75.42

Table 1. Evaluation metric (Average PSNR, Average SSIM and
Average MAE) results for different frameworks upon baseline.
The letters at the end of model description is there to give label
to that particular framework to be used in subsequent models.

Zero-DCE++ model. We have used two different types of
CBAM layers, first one with reduction ratio 4 that is applied
on first 6 CNN layers and second one with reduction ratio
2 (as there is only 3 channels in final CNN layer output)
which is applied on the final CNN layer. We have used only
average and maxpool together(used in channel attention
part of CBAM) for all CBAM layers as suggested in
original CBAM paper. We have got best output when we
haven’t applied batch norm and have applied bias in CNN
layer of CBAM(used in special attention part of CBAM).

We have conducted a variety of experiments with
CBAM to understand how different hyper-parameters
effect model’s performance and it is all mentioned in the
Ablation study section 7. The results and it’s analysis after
the modifications is mentioned in section 6 in detail.

6. Results and Analysis
6.1. Quantitative

6.1.1 Image Quality Assessment Metrics

The image quality assessment metrics PSNR, SSIM, and
MAE metrics are used to quantitatively compare the perfor-
mance of different methods. A higher SSIM value indicates
a result is closer to the ground truth in terms of structural
properties. A higher PSNR (lower MAE) value indicates a
result is closer to the ground truth in terms of pixel level
image content. The table 1 gives the details of the metrics
on different approaches.

7
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Figure 6. CBAM Attention over DCE-Net Architecture

6.1.2 Training Loss and Testing Time Comparisons

This section describes details on the training and test loss
trends of various approaches.

Figure 7. Training Loss over different experiments (Smoothing =
0)
X-axis: Epoch, Y-axis: Overall Training Loss

Looking at the training loss curve as shown in figure 7,
the training loss for the baseline implementation (labelled
as training/without attention), which is the Zero-DCE++ is
0.9437 for 10 epoch where as the training loss for the atten-
tion model (CBAM attention over DCE-Net) is 0.8602 over
the same number of epochs. Upon a number of additive ex-
periments with attention model we have the best performing
model (labelled as training/attention reduced rr)having re-
duction ratio changed from 16 originally to 4 for the first
size layers and 2 for the last/output layer, selected from ex-
perimental analysis. It is clearly seen that the best perform-
ing model is having a significantly lesser training loss with
better/early convergence. This result infers that the model is
learning well and consistently performing well on the loss
functions defined.

Figure 8. Testing time for different images over different models
(Smoothing = 0.99)
X-axis: Images, Y-axis: Overall Testing Time

Similarly, looking at the testing time over different
model configurations, the baseline model (with no any at-
tention) is performing the fastest. With addition of CBAM
attention modules, there has been increase in number of
learnable parameters along with the number of matrix cal-
culations that resulted in the increase in testing time.

The complete set of experiments with quantative results
is published here. 9

6.2. Qualitative

The figure 9 shows the qualitative comparison between
different frameworks discussed in this paper on the same
image. It provides a more practical view on the performance
of the model which is difficult to capture in terms of quan-
titative metrics. Another figure (Figure 10) shows the com-
parison between two different improved frameworks along
with the baseline model results on an image that is captured
locally from the camera of a smartphone.

9https://tinyurl.com/36z5keu2
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Figure 9. Qualitative comparison between different frameworks

Figure 10. Qualitative comparison between different frameworks for a local camera captured image

7. Ablation Study

Figure 11 shows the effect of changing number of at-
tention layers on enhanced output image. We have exper-
imented by applying attention in first 4, 6 and 7(all layers
including output layer) respectively. We can see when we
applied attention to all the layers, we have got the best re-
sults followed by attention in 6 layers and 4 layers respec-
tively.

7.1. Effect of applying Batch norm and bias in
CBAM

We know that batch norm can speed up the training but
during that it can also break the relations of neighboring
pixels which can effect the model output. Similarly adding

bias in the convolution layers can also help to better train
the model. We have observed that during our experiments
and figure 12 depicts that. We have got our best results by
not applying batch norm and adding bias in CNN layer of
CBAM.

7.2. Effect of reduction rate of CBAM

In the original CBAM paper, 16 was mentioned as a good
reduction rate for channel attention layer in CBAM but we
believe it depends on the problem. With increase in the re-
duction rate, number of neurons decreases in the linear layer
of channel attention. We have got best results when we used
reduction rate 4 for first 6 attention layers and 2 for last at-
tention layer(as number of channels are just 3). Figure 13
shows the effect on output image.
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Figure 11. Effect of attention on different number of layers of Zero-DCE++

Figure 12. Effect of adding bias and removing batch norm in
Attention enhanced Zero-DCE++ (left: original attention frame-
work)

Figure 13. Effect of reducing reduction rate in Attention enhanced
Zero-DCE++ (left: original attention framework)

7.3. Effect of different types of pooling of CBAM

As also suggested in the original CBAM paper, when we
used average and max pooling together in channel attention
layer of CBAM, we have got the best results. With this 2
we also tried adding power average pooling(LP-Pool) and
logarithmic summed exponential(LSE) but that deteriorates
the output image as we can see in figure 14.

7.4. Effect of learning rate and weight decay

In original Zero-DCE model, authors used learning rate
and weight decay(for optimizer) as 0.0001 which even

though quite small, has given pretty good results to us with
just 10 epochs. When we increased the value to 0.001, we
observed that loss decreases more as expected but output
was little noisy or over-exposed in some cases as we can
see in the Figure 15.

8. Criticism

Here are some of the downside of our approach that we
would like to highlight and we will try to address these in
future.

• Increase in training time: As we have added atten-
tion layers after each convolution layer, it definitely
increases the training time. Using 2, P100 GPU we
have experimented and have seen that after modi-
fications, the model with attention takes roughly 5
times more training time with respect to baseline
Zero-DCE++ model.

We have noticed that with batch norm in the at-
tention layer, increase in training time is not this much
but that also effects the results as we have mentioned
previously.

• Saturation: There are cases where we have observed
that attention model decreases the color saturation of
the output image, especially in the cases where the tex-
ture of the image is light as we can see in figure 16.

• Discrepancies between quantitative and qualitative
results: More the PSNR and SSIM is better the out-
put image and similarly less the MAE is better for out-
put. But we think these are not that good matrices to
evaluate the outputs of low-light image enhancement
task where quality is subjective. As we can see in the
quantitative results, our best model(7 layers of atten-
tion, no batch norm and reduced reduction rate) has
lower PSNR(8.66 vs 11.52) and higher MAE(92.03 vs
66.19) than Zero-DCE++ but the output images look
better to the human eye.
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Figure 14. Effect of adding all 4 types of pooling in Attention enhanced Zero-DCE++ (left: original attention framework)

Figure 15. Effect of increasing learning rate and weight decay in Attention enhanced Zero-DCE++ (left: original attention framework)

Figure 16. Difference in color saturation in the Zero-DCE++ base-
line and the Attention enhanced model.

9. Conclusions

Present work on low light image enhancement using
light enhancement curves opened up a new way of improv-
ing the illumination of low light images using deep learning
approach. As part this work, ZeroDCE++ based approach
was taken as the baseline and various approaches were at-
tempted out to improve the image quality without degrad-
ing the performance of the baseline model. Attention based
approaches on baseline ZeroDCE++ model improved the
quality of the enhanced image. There are still improvements
required in the extreme low light image enhancement, in
terms of the noise corrections, simplifying the model com-
plexity in order to achieve good performance in the real-
time applications. Since, various vision based projects re-
quires more efficient pre-processing pipeline, improved low
light image enhancement approaches are welcomed always.

The existing work using zero-DCE++ may be explored to
achieve better performance in terms of visual quality, noise
correction, inference time, training time and other artifacts.
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