

1

Department of Computer Science and Engineering (CSE) IIT Hyderabad

CS6450: Visual Computing

FEDERATED SEMI-SUPERVISED MEDICAL IMAGE CLASSIFICATION VIA INTER-CLIENT RELATION MATCHING

Quande Liu, Hongzheng Yang, Qi Dou, and Pheng-Ann Heng

MICCAI2021

Instructor Prof. C. Krishna Mohan **Teaching Assistant** Divya Peketi **Presenter** Kamal Shrestha cs21mtech16001

- OVERVIEW

Problem & Motivation

Traditional Approach

Proposed Approach

Results & Conclusion

OVERVIEW

Problem & Motivation

Traditional Approach

Proposed Approach

Results & Conclusion

Brain Stroke or Brain Attack kills more people than HIV, Tuberculosis, and Malaria combined.

Brain Stroke kills more people than HIV, Tuberculosis, and Malaria combined.

Data collaboration across medical institutions is increasingly desired to **mitigate the scarcity and distribution of medical images**.

OVERVIEW 2006/06/29 20:07:12 Mag: 1.00 **Problem & Motivation** R **Traditional Approach Proposed Approach**

Results & Conclusion

A

10.00mm/div

W : 75 L : 35 LeftButton : Slice

10.00mm/div

Federated learning (FL) has emerged as **a privacy-preserving solution** to learn models **without exchanging the sensitive health data**.

Local Learning of Parameters

Supervised Setting

Existing FL algorithms typically **only allow the supervised training setting**. परनीय पौटोगिकी संस्थान जेवलवा Parameters Sharing Global Aggregations Local Learning of Parameters Supervised Setting **Central Server**

A naive FSSL, solution is to simply integrate the **off-the-rack semi-supervised learning (SSL) methods** onto the federated learning paradigm.

Semi supervised setting relies heavily on the assumption that the labeled data is **accessible** to provide necessary assistance.

How to build the **interaction** between the learning at labeled and unlabeled clients, given the challenging constraint of data decentralization?

OVERVIEW BUDGIN 2006/06/29 20:07:12 Mag: 1.00 A **Problem & Motivation** R **Traditional Approach** 10.00mm/div **Proposed Approach** 10.00mm/div W : 75 L : 35 LeftButton : Slice

Results & Conclusion

Challenges to the proposed model

(a) Naive FSSL solution

Inter-client Relation Matching scheme regularizes the unlabeled clients to capture **similar disease relationships as labeled clients** for preserving the discriminative task knowledge.

Inter-client Relation Matching scheme regularizes the unlabeled clients to capture **similar disease relationships as labeled clients** for preserving the discriminative task knowledge.

Proposed approach roots in **consistency regularization mechanism**, which enforces the prediction consistency under different **input perturbations** to exploit the unlabeled data.

<u>Unsupervised data augmentation for consistency training</u> 17

Finally, the inter-client relation matching loss is designed by **minimizing the KL divergence** between disease relation matrix from labelled and unlabelled clients.

DRM, Un-labelled clients

The **local learning objectives** at labeled and unlabeled clients are respectively expressed as:

$$\mathcal{L}^{l} = \mathcal{L}_{ce}(\mathcal{D}^{l}, \theta^{l})$$
 and $\mathcal{L}^{u} = \lambda(\omega)(\mathcal{L}_{c} + \mathcal{L}_{\text{IRM}})$

n institute of Jechnology

OVERVIEW 2006/06/29 20:07:12 Mag: 1.00 A **Problem & Motivation** R **Traditional Approach** 10.00mm/div **Proposed Approach** 10.00mm/div W : 75 L : 35 LeftButton : Slice

Results & Conclusion

vecila silali fallo visure Record Indian instituce of technology indetected

FedAvg, Federated Averaging (Weighted Averaging)

Labelled

Method	Client num		Metrics					
	Label	Unlabel	AUC	Sensitivity	Specificity	Accuracy	F1	
FedAvg [20]	10	0	90.48 ± 0.31	64.33 ± 1.13	92.68 ± 0.43	89.94 ± 0.92	63.94 ± 1.20	

FedAvg, Federated Averaging with 2 supervised clients

Labelled

Method Client num Metrics Label Unlabel AUC F1Sensitivity Specificity Accuracy FedAvg [20] 100 90.48 ± 0.31 64.33 ± 1.13 92.68 ± 0.43 89.94 ± 0.92 63.94 ± 1.20 FedAvg [20] 0 83.40 ± 0.87 57.88 ± 1.68 90.48 ± 0.79 87.45 ± 1.08 57.10 ± 1.29 $\mathbf{2}$

Fed-Self Training, Federated learning with Pseudo labels

Labelled

Method Client num Metrics Label Unlabel AUC Sensitivity Specificity F1Accuracy FedAvg [20] 100 90.48 ± 0.31 64.33 ± 1.13 92.68 ± 0.43 89.94 ± 0.92 63.94 ± 1.20 FedAvg [20] $\mathbf{2}$ 0 83.40 ± 0.87 57.88 ± 1.68 90.48 ± 0.79 87.45 ± 1.08 57.10 ± 1.29 $\mathbf{2}$ Fed-SelfTraining [33] 8 84.32 ± 0.82 57.94 ± 1.66 90.22 ± 0.74 87.90 ± 1.81 57.48 ± 1.14 8 90.87 ± 0.62 Fed-Consistency [31] $\mathbf{2}$ 84.83 ± 0.79 57.26 ± 1.93 88.35 ± 1.32 57.61 ± 1.08

Fed-Consistency, Federated Learning with Consistency Loss

Labelled

Method	Client num		Metrics					
	Label	Unlabel	AUC	Sensitivity	Specificity	Accuracy	F1	
FedAvg [20]	10	0	90.48 ± 0.31	64.33 ± 1.13	92.68 ± 0.43	89.94 ± 0.92	63.94 ± 1.20	
FedAvg [20]	2	0	83.40 ± 0.87	57.88 ± 1.68	90.48 ± 0.79	87.45 ± 1.08	57.10 ± 1.29	
Fed-SelfTraining [33]	2	8	84.32 ± 0.82	57.94 ± 1.66	90.22 ± 0.74	87.90 ± 1.81	57.48 ± 1.14	
Fed-Consistency [31]	2	8	84.83 ± 0.79	57.26 ± 1.93	90.87 ± 0.62	88.35 ± 1.32	57.61 ± 1.08	

FedIRM, Federated Learning with Inter Client Relation Matching (Proposed)

Method	Client num		Metrics					
	Label	Unlabel	AUC	Sensitivity	Specificity	Accuracy	F1	
FedAvg [20]	10	0	90.48 ± 0.31	64.33 ± 1.13	92.68 ± 0.43	89.94 ± 0.92	63.94 ± 1.20	
FedAvg [20]	2	0	83.40 ± 0.87	57.88 ± 1.68	90.48 ± 0.79	87.45 ± 1.08	57.10 ± 1.29	
Fed-SelfTraining $[33]$	2	8	84.32 ± 0.82	57.94 ± 1.66	90.22 ± 0.74	87.90 ± 1.81	57.48 ± 1.14	
Fed-Consistency $[31]$	2	8	84.83 ± 0.79	57.26 ± 1.93	90.87 ± 0.62	88.35 ± 1.32	57.61 ± 1.08	
FedIRM (ours)	2	8	87.56 ± 0.56	59.57 ± 1.57	91.53 ± 0.81	88.89 ± 1.29	59.86 ± 1.65	

Making the use of unannotated data reduces the cost in individual annotations which can be redirected to more meaningful research.

Intracranial Hemorrhage

27

Myocardial Infarction

Skin Lesions

Renal Cell Carcinoma

Huge number of application possibilities

1. Aviles-Rivero, A.I., Papadakis, N., Li, R., Sellars, P., Fan, Q., Tan, R.T., Schönlieb, C.: Graphx net chest xray classification under extreme minimal supervision.

2. Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network- based cardiac mr image segmentation.

3. Chang, Q., Qu, H., Zhang, Y., Sabuncu, M., Chen, C., Zhang, T., Metaxas, D.N.: Synthetic learning: Learn from distributed asynchronized discriminator gan without sharing medical image data.

4. Cheplygina, V., de Bruijne, M., Pluim, J.P.: Not-so-supervised: a survey of semi- supervised, multiinstance, and transfer learning in medical image analysis. Medical image analysis

5. Cui, W., Liu, Y., Li, Y., Guo, M., Li, Y., Li, X., Wang, T., Zeng, X., Ye, C.: Semi-supervised brain lesion segmentation with an adapted mean teacher model.

Any questions ?

You can find me at

• cs21mtech16001@iith.ac.in