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s
Brain Stroke or Brain Attack kills more people than HIV, Tuberculosis, and wl!!!!!m
Malaria combined.
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https://www.statista.com/statistics/944176/india-number-of-cases-of-cerebral-stroke-in-senior-citizens/

Brain Stroke kills more people than HIV, Tuberculosis, and Malaria Illl‘

I combined.
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https://www.healio.com/news/neurology/20200925/infection-causes-more-than-a-quarter-of-deaths-among-survivors-of-intracerebral-hemorrhage

Data collaboration across medical institutions is increasingly desired to m!!!m
mitigate the scarcity and distribution of medical images. )
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Federated learning (FL) has emerged as a privacy-preserving solution to JL!!!!W
learn models without exchanging the sensitive health data.
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I Existing FL algorithms typically only allow the supervised training setting. WL!!L
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A naive FSSL, solution is to simply integrate the off-the-rack semi-supervised m!lm
learning (SSL) methods onto the federated learning paradigm. -
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Semi supervised setting relies heavily on the assumption that the labeled WL!!L
data is accessible to provide necessary assistance.
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Pseudo-Label: The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks 11



http://deeplearning.net/wp-content/uploads/2013/03/pseudo_label_final.pdf
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How to build the interaction between the learning at labeled and unlabeled Illl
clients, given the challenging constraint of data decentralization?
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I Challenges to the proposed model Illl
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‘ Inter-client Relation Matching\scheme regularizes the unlabeled clients to capture ||Il||
Similar disease relationships as labeled clients for preserving the discriminative e

task knowledge.
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(b) Our FSSL solution (FedIRM)



Inter-client Relation Matching scheme regularizes the unlabeled clients to capture |Il|
similar disease relationships as labeled clients for preserving the discriminative e

task knowledge.
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O
Proposed approach roots in consistency regularization mechanism, which enforces |Il|

the prediction consistency under different input perturbations to exploit the -
unlabeled data.
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Unsupervised data augmentation for consistency training 17



https://arxiv.org/abs/1904.12848

Finally, the inter-client relation matching loss is designed by minimizing the KL Illl
divergence between disease relation matrix from labelled and unlabelled clients. .
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The local learning objectives at labeled and unlabeled clients are respectively WL!!L
expressed as:
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I FedAvg, Federated Averaging (Weighted Averaging)

Labelled it sie

Method Client num Metrics
Label Unlabel AUC Sensitivity Specificity Accuracy F1
FedAvg [20] 10 0 90.48 +0.31 |64.33+1.13 |92.68+0.43 89.94+4+0.92 63.94+1.20

Mean teachers are better role models
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I FedAvg, Federated Averaging with 2 supervised clients
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Labelled ﬂ ﬂ Un Labelled
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Method Client num Metrics
Label Unlabel AUC Sensitivity Specificity Accuracy F1
FedAvg [20] 10 0 90.48 £ 0.31 |64.33+£1.13 92.68 1+ 0.43 |89.94+4+0.92 63.94+1.20
FedAvg [20] 2 0 83.40 £ 0.87 |57.88+1.68 90.48+0.79 B7.45+1.08 57.10+£1.29
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I Fed-Self Training, Federated learning with Pseudo labels

Labelled ﬂ :ﬂj ﬂ ﬂ ﬂ Un Labelled
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[ E m .
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Method Client num Metrics
Label Unlabel AUC Sensitivity Specificity Accuracy F1
FedAvg [20] 10 0 90.48 +0.31 |64.33+1.13 |92.68 +0.43 89.944+0.92 63.94+1.20
FedAvg [20] 2 0 83.40 £ 0.87 |57.88+1.68 90.48+0.7T9 B7.45+1.08 57.10+1.29
Fed-SelfTraining [33]| 2 8 84.32+0.82 |57.944+1.66 90.221+0.7T4 |87.90+1.81 |[57.48+1.14
Fed-Consistency [31]| 2 3 84.83 +0.79 |57.26+1.93 90.87+0.62 |88.35+1.32 |57.61 +£1.08
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I Fed-Consistency, Federated Learning with Consistency Loss

Labelled ﬂ ﬂ ﬂ ﬂ ﬂ Un Labelled
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EX™ EIX™ =X = X = X
Method Client num Metrics
Label Unlabel AUC Sensitivity Specificity Accuracy F1
FedAvg [20] 10 0 90.48 +0.31 |64.33+1.13 |92.68 +0.43 89.944+0.92 63.94+1.20
FedAvg [20] 2 0 83.40 £ 0.87 |57.88+1.68 90.48+0.7T9 B7.45+1.08 57.10+1.29
Fed-SelfTraining [33]| 2 8 84.32+0.82 |57.944+1.66 90.221+0.7T4 |87.90+1.81 |[57.48+1.14
Fed-Consistency [31]| 2 3 84.83 +0.79 |57.26+1.93 90.87+0.62 |88.35+1.32 |57.61 +£1.08
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I FedIRM, Federated Learning with Inter Client Relation Matching (Proposed) Illlll

Labelled ﬂ ﬂ ﬂ ﬂ ﬂ Un Labelled
=2 - -—.) - -,_) - -.} -
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N
[ E m .
EX™ EX™ = X" =S X" =X
Method Client num Metrics
Label Unlabel AUC Sensitivity Specificity Accuracy F1
FedAvg [20] 10 0 90.48 +0.31 |64.33+1.13 92.68 +0.43 |89.94+0.92 63.94+1.20
FedAvg [20] 2 0 83.40 £ 0.87 |b7.88+1.68 90.48+0.7T9 |8B7.45+1.08 |57.10+1.29
Fed-SelfTraining [33]| 2 8 84.32 4+ 0.82 |57.94+1.66 90.224+0.7T4 87.90+1.81 57.48+1.14
Fed-Consistency [31]| 2 el 84.83 +0.79 |57.26 +1.93 90.87+0.62 88.35+1.32 57.61+1.08
FedIRM (ours) 2 3 87.56 + 0.56 59.567 + 1.567 91.53 + 0.81 88.89 + 1.29 59.86 + 1.65
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Making the use of unannotated data reduces the cost in individual annotations which Illl
can be redirected to more meaningful research. T,
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Intracranial Hemorrhage
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Myocardial Infarction
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®
I Skin Lesions Illlll
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Renal Cell Carcinoma
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Huge number of application possibilities
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