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Brain Stroke or Brain Attack kills more people than HIV, Tuberculosis, and 
Malaria combined.

1 10s
seconds
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Statista 2022

https://www.statista.com/statistics/944176/india-number-of-cases-of-cerebral-stroke-in-senior-citizens/
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Brain Stroke kills more people than HIV, Tuberculosis, and Malaria 
combined.

Healio

https://www.healio.com/news/neurology/20200925/infection-causes-more-than-a-quarter-of-deaths-among-survivors-of-intracerebral-hemorrhage


6

Data collaboration across medical institutions is increasingly desired to 
mitigate the scarcity and distribution of medical images.
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Federated learning (FL) has emerged as a privacy-preserving solution to 
learn models without exchanging the sensitive health data.

Local Learning of Parameters

Supervised Setting

Global 
Aggregations
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Existing FL algorithms typically only allow the supervised training setting.

Local Learning of Parameters

Supervised Setting

Global 
Aggregations
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A naive FSSL, solution is to simply integrate the off-the-rack semi-supervised 
learning (SSL) methods onto the federated learning paradigm.
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Semi supervised setting relies  heavily on the assumption that the labeled 
data is accessible to provide necessary assistance.

Pseudo-Label: The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks

http://deeplearning.net/wp-content/uploads/2013/03/pseudo_label_final.pdf
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How to build the interaction between the learning at labeled and unlabeled 
clients, given the challenging constraint of data decentralization?

ASSIST?
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Challenges to the proposed model

Teacher 
Model

Student 
Model

Combined 
Model
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Inter-client Relation Matching scheme regularizes the unlabeled clients to capture
similar disease relationships as labeled clients for preserving the discriminative
task knowledge.
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Inter-client Relation Matching scheme regularizes the unlabeled clients to capture
similar disease relationships as labeled clients for preserving the discriminative
task knowledge.

DRM, labelled clients
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Proposed approach roots in consistency regularization mechanism, which enforces
the prediction consistency under different input perturbations to exploit the
unlabeled data.

Unsupervised data augmentation for consistency training

DRM, 
Un-labelled clients

https://arxiv.org/abs/1904.12848
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Finally, the inter-client relation matching loss is designed by minimizing the KL
divergence between disease relation matrix from labelled and unlabelled clients.

DRM, Un-labelled clients

DRM, labelled clients
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The local learning objectives at labeled and unlabeled clients are respectively
expressed as:
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FedAvg, Federated Averaging (Weighted Averaging)

Mean teachers are better role models

Labelled
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FedAvg, Federated Averaging with 2 supervised clients

Labelled Un Labelled
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Fed-Self Training, Federated learning with Pseudo labels

Labelled Un Labelled
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Fed-Consistency, Federated Learning with Consistency Loss

Labelled Un Labelled
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FedIRM, Federated Learning with Inter Client Relation Matching (Proposed)

Labelled Un Labelled
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Making the use of unannotated data reduces the cost in individual annotations which 
can be redirected to more meaningful research.
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Intracranial Hemorrhage
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Myocardial Infarction
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Skin Lesions
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Renal Cell Carcinoma
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Huge number of application possibilities
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Any questions ?

You can find me at

◉ cs21mtech16001@iith.ac.in

Thanks!
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