

1

Department of Computer Science and Engineering (CSE) IIT Hyderabad

CS6450: Visual Computing

FEDERATED SEMI-SUPERVISED MEDICAL IMAGE CLASSIFICATION VIA INTER-CLIENT RELATION MATCHING

Quande Liu, Hongzheng Yang, Qi Dou, and Pheng-Ann Heng

MICCAI2021

Instructor Prof. C. Krishna Mohan **Teaching Assistant** Divya Peketi **Presenter** Kamal Shrestha cs21mtech16001

OVERVIEW Problem & Motivation Traditional Approach

Fed-IRM

Implementation Details

OVERVIEW Problem & Motivation Traditional Approach

Fed-IRM

Implementation Details

A

10.00mm/div

10.00mm/div

W : 75 L : 35 LeftButton : Slice

Brain Stroke or Brain Attack kills more people than HIV, Tuberculosis, and Malaria combined.

Statista 2022 4

Brain Stroke kills more people than HIV, Tuberculosis, and Malaria combined.

Data collaboration across medical institutions is increasingly desired to **mitigate the scarcity and distribution of medical images**.

OVERVIEW CIARLO,GIN(2006/06/29 20:07:12 Mag: 1.00 A **Problem & Motivation** R **Traditional Approach** 10.00mm/div **Fed-IRM** 512 x 512 W : 75 L : 35 LeftButton : Slice 10.00mm/div

Implementation Details

Federated learning (FL) has emerged as **a privacy-preserving solution** to learn models **without exchanging the sensitive health data**.

Local Learning of Parameters

Supervised Setting

Existing FL algorithms typically only allow the supervised training setting. Parameters Sharing Global Aggregations Local Learning of Parameters Supervised Setting Semi-Supervised **Central Server**

A naive FSSL, solution is to simply integrate the **off-the-rack semi-supervised learning (SSL) methods** onto the federated learning paradigm.

Federated Learning in a Semi Supervised Scenario n institute of Jechnology Har Combined Model Global Aggregations . .parameter Sharing **Un-Supervised** Supervised Setting Setting Student Teacher Model **Model** Assist Local Learning of Parameters

Supervised Clients

Semi Supervised Scenario: Teacher Model (Common Supervised Setting)

Semi Supervised Scenario: Student Model

Semi Supervised Scenario: Student Model

Global Model from Teacher and Student Model

Federated Learning in a Semi Supervised Scenario

Federated Learning in a Semi Supervised Scenario भारतीय प्रौद्योगिकी संस्थान जेवनक Indian Institute of Inchoology Huderah Combined Model Global Aggregations . . Parameter Sharing ۰. Student Teacher Model Model Assist

How to build the **interaction** between the learning at labeled and unlabeled clients, given the challenging constraint of data decentralization?

OVERVIEW CIARLO,GIN(2006/06/29 20:07:12 Mag: 1.00 A **Problem & Motivation** R **Traditional Approach** 10.00mm/div Fed-IRM 512 x 51 W : 75 L : 35 LeftButton : Slice 10.00mm/div

Implementation Details

Inter-client Relation Matching scheme regularizes the unlabeled clients to capture **similar disease relationships as labeled clients** for preserving the discriminative task knowledge.

Vectors

Soft Confusion Matrix = Disease Relation

Matrix

Disease Relation Matrix in **Student Model**

Disease Relation Matrix

Disease Relation Matrix in **Student Model**

Student Model Assist TRAINING Teacher DRM Model Predicted Labels Pseudo-Labels Overall Training Loss = KL Divergence Loss + Cross Entropy Loss

Calculation of **Training Loss** in Fed-IRM

Finally, the inter-client relation matching loss is designed by **minimizing the KL divergence** between disease relation matrix from labelled and unlabelled clients.

DRM, Un-labelled clients

$$\mathcal{L}^{l} = \mathcal{L}_{ce}(\mathcal{D}^{l}, \theta^{l})$$
 and $\mathcal{L}^{u} = \lambda(\omega)(\mathcal{L}_{c} + \mathcal{L}_{\text{IRM}})$

expressed as:

Reflection!

OVERVIEW CIARLO,GINI 2006/06/29 20:07:12 Mag: 1.00 A **Problem & Motivation** R **Traditional Approach** 10.00mm/div **Fed-IRM** 512 x 51 W : 75 L : 35 LeftButton : Slice _____ 10.00mm/div

Implementations

Dataset

128 X 128 pixels

674, 626 Brain MRI images 185 GB (0.25 MB per image) DICOM format (Int. Standard) 674, 626 3 GB PNG format Brain MRI images

Types of Intracranial Hemorrhage

Intraventricular

Inside of the ventricle

674, 626 Brain MRI images

Intraparenchymal

Inside of the brain

Classification Problem Setup

674, 626 Brain MRI images

74	ID 4419f8ae9 epidural,0
75	ID 4419f8ae9 intraparenchymal,0
76	ID 4419f8ae9 intraventricular,0
77	ID 4419f8ae9 subarachnoid,0
78	ID 4419f8ae9 subdural,0
79	ID bcfladd28 epidural,0
80	ID bcfladd28 intraparenchymal,0
81	<pre>ID bcf1add28 intraventricular,1</pre>
82	ID bcfladd28 subarachnoid,0
83	ID bcfladd28 subdural,0
84	ID_aeda0804d_epidural,0
85	ID_aeda0804d_intraparenchymal,0
86	ID_aeda0804d_intraventricular,0
87	ID_aeda0804d_subarachnoid,0
88	ID aeda0804d subdural,1

Labels: Comma Separated Values

Classification Problem Setup

674, 626 Brain MRI images

Working Directory, List of all modules

27 ^L	— test.	ру
-----------------	---------	----

def	args_parser():
	parser = argparse. ArgumentParser()
	parser.add argument('batch size', type=int, default=46, netp="batch size per gpu")
	parser.add argument('drop rate", type=int, default=0.2, netp="dropout rate")
	parser.add_argument("ema_consistency", type=int, detault=1, netp="Whether train baseline model")
	<pre>parser.add_argument("base_tr", type=float, default=le-3, hetp="maximum epoch number to train")</pre>
	<pre>parser.add_argument("deterministic", type=int, default=1, help="whether use deterministic training")</pre>
	<pre>parser.add_argument("seed", type=int, default=1337, help="random seed")</pre>
	<pre>parser.add_argument("gpu", type=str, default="0,1", help="GPU to use")</pre>
	<pre>parser.add_argument("local_ep", type=int, default=2, help="local epoch")</pre>
	<pre>parser.add_argument("num_users", type=int, default=10, help="local epoch")</pre>
	<pre>parser.add_argument("rounds", type=int, default=200, help="local epoch")</pre>
	### tune
	<pre>parser.add_argument("resume", type=str, default=None, help="model to resume")</pre>
	<pre>parser.add_argument("start_epoch", type=int, default=0, help="start_epoch")</pre>
	<pre>parser.add argument("global step", type=int, default=0, help="global step")</pre>
	### costs
	<pre>parser.add argument("label uncertainty", type=str, default="U-Ones", help="label type")</pre>
	<pre>parser.add argument("ema decay", type=float, default=0.99, help="ema decay")</pre>
	<pre>parser.add argument("consistency", type=float, default=1, help="consistency")</pre>
	<pre>parser.add argument("consistency rampup", type=float, default=30, help="consistency rampup")</pre>
	args = parser.parse args()
	return args

Global Parameters Aggregations

urclin stellar bi risuar fremari

Code Entrypoint: Trainer and Tester Modules

Simulating Semi Supervised Learning

Training Supervised Clients

Supervised Training


```
for epoch in range(args.local_ep):
   batch loss = []
   iter max = len(self.ldr train)
   for i, ( , , (image batch, ema image batch), label batch) in enumerate(self.ldr train):
       image batch, ema image batch, label batch = (
           image batch.cuda(),
           ema image batch.cuda(),
            label batch.cuda(),
        inputs = image batch
          outputs = net(inputs)
       with torch.no grad():
            self.confuse_matrix = self.confuse_matrix + get_confuse_matrix(outputs, label_batch)
       loss classification = loss fn(outputs, label batch.long())
       loss = loss classification
       self.optimizer.zero grad()
       loss.backward()
       self.optimizer.step()
       batch loss.append(loss.item())
       self.iter num = self.iter num + 1
   self.epoch = self.epoch + 1
   epoch loss.append(np.array(batch loss).mean())
```


Training Semi-Supervised Clients

Semi-Supervised Training Sample Code

Parameters Update

Parameter Initialization

```
Herdin stellars of Hedinary Johnson
```

dict_users = split(train_dataset, args.num_users)

```
net_glob = DenseNet121(out_size=5, mode=args.label_uncertainty, drop_rate=args.drop_rate)
```

net_glob.train()

```
w_glob = net_glob.state_dict()
w_locals = []
trainer_locals = []
net_locals = []
optim locals = []
```

```
for i in supervised_user_id:
    trainer locals.append(SupervisedLocalUpdate(args, train dataset, dict users[i]))
```

```
w_locals.append(copy.deepcopy(w_glob))
```

net_locals.append(copy.deepcopy(net_glob).cuda())

```
optimizer = torch.optim.Adam(
    net_locals[i].parameters(),
    lr=args.base_lr,
    betas=(0.9, 0.999),
    weight_decay=5e-4,
```

optim_locals.append(copy.deepcopy(optimizer.state_dict()))

```
for i in unsupervised_user_id:
    trainer_locals.append(UnsupervisedLocalUpdate(args, train_dataset, dict_users[i]))
```

Parameter Update

for i in unsupervised_user_id: net_locals[i].load_state_dict(w_glob)

Revised Hyperparameters

Hyperparameter	Original Value	Revised Value
Training Instances	80% = 2, 698, 504	2% = 6, 500
Test Instances	20% = 674, 626	1000
Batch Size	48	5
Local Epochs	5	1
Common Rounds	200	100
GPU	3 GPUs of Titan XP	100% utilization of Tesla P100-SXM2-16GB
Overall Training Time	24 hours + (Parallel Processing)	7 hours 23 minutes (Single GPU)

Results

Hyperparameter	Original Value	Revised Value
Training Instances	80% = 2, 698, 504	2% = 6, 500
Test Instances	20% = 674, 626	1000
Batch Size	48	5
Local Epochs	1	1
Common Rounds	100	100
GPU	3 GPUs of Titan XP	Tesla P100-SXM2-16GB
Overall Training Time	24 hours + (Parallel Processing)	7 hours 23 minutes (Single GPU)
	Accuracy = 92.89 ± 0.25	Accuracy = 0.663200
Evaluation Metrics	F1 Score = 55.81 ± 1.49	F1 Score = 0.607859
	AUROC = 92.46 ± 0.45	AUROC = 0.580663

Results

2178	Begin: com_round = 94	
2179		Begin: com round = 97
2180	[14:04:15.974] Supervised Client: 0	begin: com_round = 57
2181	[14:04:15.974]	
2182	[14:04:31.551] Supervised Client: 1	[14:33:08.663] Semi-Supervised Client: 2
2183	[14:04:31.551]	[14:33:08.663]
2184	[14:04:47.034] Semi-Supervised Client: 2	[14.33.40 522] Somi-Supervised Client, 3
2185	[14:04:47.034]	[14.33.40.322] Semi-Supervised Citent. S
2186	<pre>[14:05:18.369] Semi-Supervised Client: 3</pre>	[14:33:40.522]
2187	[14:05:18.369]	[14:34:11.544] Semi-Supervised Client: 4
2188	[14:05:50.078] Semi-Supervised Client: 4	[14·34·11_544]
2189	[14:05:50.078]	[14.34.42.342] Comi Supervised Client, 5
2190	[14:06:21.786] Semi-Supervised Client: 5	[14:54:42.542] Semi-Supervised Citent: 5
2191	[14:06:21.786]	[14:34:42.342]
2192	[14:06:52.452] Semi-Supervised Client: 6	[14:35:13.087] Semi-Supervised Client: 6
2193	[14:06:52.452]	14-35-13 087]
2194	[14:07:23.026] Semi-Supervised Client: 7	
2195	[14:07:23.026]	[14:35:43.846] Semi-Supervised Client: /
2196	[14:07:53.785] Semi-Supervised Client: 8	[14:35:43.846]
2197	[14:07:53.786]	[14:36:14.373] Semi-Supervised Client: 8
2198	[14:08:24.390] Semi-Supervised Client: 9	[14.26.14.272]
2199	[14:08:24.390]	[14:30:14.3/3]
2200	[14:08:55.883] Loss Avg: 0.158969905116299, Common Round: 94, LR: 0.001	[14:36:45.141] Semi-Supervised Client: 9
2201	[14:09:00.894] TEST AUROC: 0.561466, TEST Accus: 0.630000, F1: 0.571264	[14:36:45.141]
2202	[14:09:00.895]	[14.37.18 142] Loss Avg. 0 0032918424397146077 Common Bound: 100 LB: 0 001
2203	Begin: com_round = 95	[14.57.52.174] ESS AUD.C. 0 50052007 JEST AUD.C. 0 507000 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2204	[14.00.00.005] Currentiand Clients 0	[14:37:23.170] IESI AURUC: 0.380003, IESI ACCUS: 0.003200, FI: 0.007859[15:35:01.050]
2205	[14:09:00.895] Supervised Client: 0	

Evaluation Metrics	Accuracy = 0.663200	F1 Score = 0.607859	AUROC = 0.580663
-----------------------	----------------------------	----------------------------	-------------------------

Experimentations on Available Model

Hyperparameters	Models	Accuracy	F1 Score	AUROC	Training Time (Single GPU)
Training Instances: 6500	Revised Baseline Model	0.663200	0.607859	0.580663	7 hours 23 mins
Test Instances: 1000 Batch Size: 5	DRM Distribution Wasserstein Distance(WD) instead of KL Divergence	0.682241	0.634432	0.537658	7 hours 52 mins
Common Rounds: 100 GPU: Tesla P100-SXM2-	Self Attention Layer on top of DenseNet121	0.710034	0.681145	0.635578	10 hours 44 mins
16GB	Future Scope: Segmentation instead of Discrimination Task	3D UI super	Net for Segment vised setting	ation tasks in M	SD Dataset in semi

Self-Sequential Attention Layer based DenseNet for Thoracic Diseases Detection

Results: Self Attention with DenseNet-121

[16:48:29.380] Semi-Supervised Client: 9 5519 5520 [16:48:29.380] --5521 [16:49:12.289] Loss Avg: 0.1600619061962269, Common Round: 89, LR: 0.001 5522 [16:49:17.476] TEST AUROC: 0.590694, TEST Accus: 0.703000, F1: 0.652454 5523 [16:49:17.477] 5524 Begin: com round = 90 5525 5526 [16:49:17.477] Supervised Client: 0 5527 [16:49:17.477] --5528 [16:49:37.165] Supervised Client: 1 5529 [16:49:37.165] --5530 [16:49:56.450] Semi-Supervised Client: 2 5531 [16:49:56.450] --5532 [16:50:36.444] Semi-Supervised Client: 3 5533 [16:50:36.444] --5534 [16:51:16.744] Semi-Supervised Client: 4 5535 [16:51:16.744] --5536 [16:51:57.037] Semi-Supervised Client: 5 5537 [16:51:57.037] --5538 [16:52:37.348] Semi-Supervised Client: 6 5539 [16:52:37.348] --5540 [16:53:17.049] Semi-Supervised Client: 7 5541 [16:53:17.049] --5542 [16:53:57.306] Semi-Supervised Client: 8 5543 [16:53:57.307] --5544 [16:54:38.264] Semi-Supervised Client: 9 5545 [16:54:38.265] --[16:55:20.522] Loss Avg: 0.16720833418491693, Common Round: 90, LR: 0.001 5546 [16:55:25.708] TEST AUROC: 0.635578, TEST Accus: 0.710034, F1: 0.681145 5547 5548 10:55:25.7091 5549 Begin: com round = 91 5550 5551 [16:55:25.709] Supervised Client: 0

Evaluation Metrics	Accuracy = 0.710034	F1 Score = 0.681145	AUROC = 0.635578
-----------------------	----------------------------	----------------------------	-------------------------

Making the use of unannotated data reduces the cost in individual annotations which can be redirected to more meaningful research.

Intracranial Hemorrhage

Myocardial Infarction

Skin Lesions

Renal Cell Carcinoma

Huge number of application possibilities

References

- 1. Aviles-Rivero, A.I., Papadakis, N., Li, R., Sellars, P., Fan, Q., Tan, R.T., Schönlieb, C.: Graphx net chest x-ray classification under extreme minimal supervision.
- 2. Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation
- 3. Chang, Q., Qu, H., Zhang, Y., Sabuncu, M., Chen, C., Zhang, T., Metaxas, D.N.: Synthetic learning: Learn from distributed asynchronized discriminator gan without sharing medical image data.
- 4. Cheplygina, V., de Bruijne, M., Pluim, J.P.: Not-so-supervised: a survey of semi- supervised, multi-instance, and transfer learning in medical image analysis. Medical image analysis.
- 5. Cui, W., Liu, Y., Li, Y., Guo, M., Li, Y., Li, X., Wang, T., Zeng, X., Ye, C.: Semi-supervised brain lesion segmentation with an adapted mean teacher model.
- 6. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 1–9 (2018)
- 7. Wang, D., Zhang, Y., Zhang, K., Wang, L.: Focalmix: semi-supervised learning for 3D medical image detection. In: CVPR, pp. 3951–3960 (2020)
- 8. Zhang, Z., Yao, Z., Yang, Y., Yan, Y., Gonzalez, J.E., Mahoney, M.W.: Benchmarking semi-supervised federated learning. arXiv preprint arXiv:2008.11364 (2020)

Any questions ?

You can find me at

• cs21mtech16001@iith.ac.in