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Brain Stroke or Brain Attack kills more people than HIV, Tuberculosis, and 
Malaria combined.

Statista 2022

https://www.statista.com/statistics/944176/india-number-of-cases-of-cerebral-stroke-in-senior-citizens/
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Brain Stroke kills more people than HIV, Tuberculosis, and Malaria 
combined.

Healio

https://www.healio.com/news/neurology/20200925/infection-causes-more-than-a-quarter-of-deaths-among-survivors-of-intracerebral-hemorrhage
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Data collaboration across medical institutions is increasingly desired to 
mitigate the scarcity and distribution of medical images.



OVERVIEW

7

Problem & Motivation

Traditional Approach

Fed-IRM

Implementation Details



8

Federated learning (FL) has emerged as a privacy-preserving solution to 
learn models without exchanging the sensitive health data.

Local Learning of Parameters

Supervised Setting

Global 
Aggregations
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Existing FL algorithms typically only allow the supervised training setting.

Local Learning of Parameters

Supervised Setting

Global 
Aggregations

Semi- Supervised
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A naive FSSL, solution is to simply integrate the off-the-rack semi-supervised 
learning (SSL) methods onto the federated learning paradigm.

RACK



11

Federated Learning in a Semi Supervised Scenario
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Semi Supervised Scenario: Teacher Model (Common Supervised Setting)
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Semi Supervised Scenario: Student Model

Teacher 
Model

Data

Labels

Trained

Gradients Back Propagation 

Teacher 
Model

Teacher 
Model

Inference

Pseudo-Labels

Unlabelled Data



14

Semi Supervised Scenario: Student Model

Teacher 
Model

Inference

Pseudo-Labels

Student 
Model

Data

Training…

Gradients Back Propagation 

Pseudo-Labels

Unlabelled Data

Predicted 
Labels



15

Global Model from Teacher and Student Model
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Federated Learning in a Semi Supervised Scenario
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Federated Learning in a Semi Supervised Scenario
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How to build the interaction between the learning at labeled and unlabeled 
clients, given the challenging constraint of data decentralization?

ASSIST?

Fed- IRM

Teacher 
Model

Student 
Model

Assist ??
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Inter-client Relation Matching scheme regularizes the unlabeled clients to capture
similar disease relationships as labeled clients for preserving the discriminative
task knowledge.
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Disease Relation Matrix in Teacher Model 
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Disease Relation Matrix in Teacher Model 
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Disease Relation Matrix in Teacher Model 
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Disease Relation Matrix in Teacher Model 
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Disease Relation Matrix in Teacher Model 

f(P

L)
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Matrix
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Disease Relation Matrix in Teacher Model 
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Disease Relation Matrix in Student Model 
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Disease Relation Matrix in Student Model 
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Calculation of Training Loss in Fed-IRM
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Finally, the inter-client relation matching loss is designed by minimizing the KL
divergence between disease relation matrix from labelled and unlabelled clients.

DRM, Un-labelled clients

DRM, labelled clients
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The local learning objectives at labeled and unlabeled clients are respectively
expressed as:



Any questions till here?

Reflection!
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Dataset

674, 626 
Brain MRI images

185 GB
(0.25 MB 
per image)

DICOM format
(Int. Standard)

Size 
Transformation

Format 
Transformation

674, 626 
Brain MRI images

3 GB PNG format

128 X 128 pixels
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Types of Intracranial Hemorrhage
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Classification Problem Setup
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Classification Problem Setup
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Classification 
Setup

674, 626 X 5
= 

3, 373, 130
Data instances

1

2

3

4

5

Epidural

Parenchymal

Intraventricular

Subarachnoid

Subdural

0

0

1

0

0



38

Working Directory, List of all modules
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Working Directory
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Working Directory

Custom Pytorch Data 
Loaders
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Working Directory

DenseNet121, Pre-Trained in 
ImageNet Dataset

Teacher Model

Student Model
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Working Directory

Custom Loading Saved 
Checkpoints for DenseNet121
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Working Directory

Utility Functions to calculate 
loss and evaluation metrics
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Working Directory

Modules to train in 
Supervised and Semi-

Supervised Clients
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Working Directory

Global Parameters 
Aggregations
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Working Directory

Code Entrypoint: Trainer and Tester Modules
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Simulating Semi Supervised Learning
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Training Supervised Clients
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Supervised Training
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Training Semi-Supervised Clients
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Semi-Supervised Training Sample Code
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Parameters Update
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Parameter Initialization
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Parameter Update

Parameters Initialization

Supervised Training

Training Loop
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Parameter Update



55

Revised Hyperparameters

Hyperparameter Original Value Revised Value

Training Instances
80% = 2, 698, 504 2% = 6, 500 

Test Instances 20% = 674, 626 1000

Batch Size 48 5

Local Epochs 5 1

Common Rounds 200 100

GPU 3 GPUs of Titan XP
100% utilization of 

Tesla P100-SXM2-16GB

Overall Training Time 24 hours + (Parallel Processing) 7 hours 23 minutes (Single GPU)
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Results

Hyperparameter Original Value Revised Value

Training Instances 80% = 2, 698, 504 2% = 6, 500

Test Instances 20% = 674, 626 1000

Batch Size 48 5

Local Epochs 1 1

Common Rounds 100 100

GPU 3 GPUs of Titan XP Tesla P100-SXM2-16GB

Overall Training Time 24 hours + (Parallel Processing) 7 hours 23 minutes (Single GPU)

Evaluation Metrics

Accuracy = 92.89 ± 0.25

F1 Score = 55.81 ± 1.49

AUROC = 92.46 ± 0.45

Accuracy = 0.663200

F1 Score = 0.607859

AUROC = 0.580663



57

Results

Evaluation 

Metrics
Accuracy = 0.663200 F1 Score = 0.607859 AUROC = 0.580663
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Experimentations on Available Model

Hyperparameters Models Accuracy F1 Score AUROC
Training Time

(Single GPU)

Training Instances:   6500 

Test Instances:   1000

Batch Size:                5

Local Epochs:            1

Common Rounds:     100

GPU: Tesla P100-SXM2-

16GB

Revised Baseline Model 0.663200 0.607859 0.580663 7 hours 23 mins 

DRM Distribution

Wasserstein Distance(WD) 

instead of KL Divergence

0.682241 0.634432 0.537658 7 hours 52 mins 

Self Attention Layer on top of 

DenseNet121
0.710034 0.681145 0.635578 10 hours 44 mins

Future Scope:

Segmentation instead of 

Discrimination Task

3D UNet for Segmentation tasks in MSD Dataset in semi 

supervised setting

Self-Sequential Attention Layer based DenseNet for Thoracic Diseases Detection

http://www.inass.org/2021/2021083115.pdf
http://www.inass.org/2021/2021083115.pdf
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Results: Self Attention with DenseNet-121

Evaluation 

Metrics
Accuracy = 0.710034 F1 Score = 0.681145 AUROC = 0.635578
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Making the use of unannotated data reduces the cost in individual annotations which 
can be redirected to more meaningful research.

Unlabelled Data
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Intracranial Hemorrhage
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Myocardial Infarction
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Skin Lesions
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Renal Cell Carcinoma
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Huge number of application possibilities
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Any questions ?

You can find me at

◉ cs21mtech16001@iith.ac.in

Thanks!
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